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1. Introduction

This report describes the internal structure of the networking facilities of the Sun Workstation version of
the UNIX operating system. These facilities are derived from the networking facilities added at U.C.
Berkeley in the Berkeley 4.2 release of the system. The system provides a uniform user interface to net-
working, and a structure that permits system implementors to add new facilities. The internal structure is
not visible to the user, rather it is intended to aid implementors of communication protocols and network
services by providing a framework that promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system interface, as
described in the System Interface Overview at the beginning of the Sun" System Interface Manual . Basic
understanding of network communication concepts is assumed; where required any additional ideas are
introduced.

The remainder of this document provides a description of the system internals, avoiding, when possible,
those portions utilized only by the interprocess communication facilities.

2. Overview

If we consider the International Standards Organization’s (ISO) Open System Interconnection (OSI)
model of network communication [ISO81] [Zimmermann80], the networking facilities described here
correspond to a portion of the session layer (layer 3) and all of the transport and network layers (layers 2
and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal addressing structure.
Addressing at this level is normally host to host, with implicit or explicit routing optionally supported by
the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and service address-
ing are normally included. Reliability is usually managed by explicit acknowledgement of data delivered.
Failure to acknowledge a transfer results in retransmission of the data. Sequencing may be handled by
tagging each message handed to the network layer by a sequence number and maintaining state at the
endpoints of communication to utilize received sequence numbers in reordering data which arrives out of
order.

The session layer facilities may provide forms of addressing which are mapped into formats required by
the transport layer, service authentication and client authentication, etc. Various systems also provide ser-
vices such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility routines, then
examine the internal layering. The contents of each layer and its interface are considered. Certain of the
interfaces are protocol implementation specific. For these cases examples have been drawn from the Inter-
net [Cerf78] protocol family. Later sections cover routing issues, the design of the raw socket interface
and other miscellaneous topics.
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3. Goals

The networking system was designed with the goal of supporting multiple protocol families and address-
ing styles. This required information to be ‘‘hidden’’ in common data structures which could be manipu-
lated by all the pieces of the system, but which required interpretation only by the protocols which ‘‘con-
trolled’’ it. The system described here attempts to minimize the use of shared data structures to those kept
by a suite of protocols (a protocol family ), and those used for rendezvous between ‘‘synchronous’’ and
‘‘asynchronous’’ portions of the system (for example, queues of data packets are filled at interrupt time
and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and hardware could
easily be supported. To this end, a great deal of effort has been extended to create utility routines which
hide many of the more complex and/or hardware dependent chores of networking. Later sections
describe the utility routines and the underlying data structures they manipulate.

4. Internal Address Representation

Common to all portions of the system are two data structures. These structures are used to represent
addresses and various data objects. Addresses, internally are described by the sockaddr structure,

struct sockaddr {
short sa_family; /* data format identifier */
char sa_data[14]; /* address */

};

All addresses belong to one or more address families which define their format and interpretation. The
sa_family field indicates which address family the address belongs to, the sa_data field contains the
actual data value. The size of the data field, 14 bytes, was selected based on a study of current address
formats

5. Memory Management

A single mechanism is used for data storage: memory buffers, or mbuf ’s. An mbuf is a structure of the
form:

struct mbuf {
struct mbuf *m_next; /* next buffer in chain */
u_long m_off; /* offset of data */
short m_len; /* amount of data in this mbuf */
short m_type; /* mbuf type (accounting) */
u_char m_dat[MLEN]; /* data storage */
struct mbuf *m_act; /* link in higher-level mbuf list */

};

The m_next field is used to chain mbufs together on linked lists, while the m_act field allows lists of
mbufs to be accumulated. By convention, the mbufs common to a single object (for example, a packet)
are chained together with the m_next field, while groups of objects are linked via the m_act field (possi-
bly when in a queue).

Each mbuf has a small data area for storing information, m_dat . The m_len field indicates the amount of
data, while the m_off field is an offset to the beginning of the data from the base of the mbuf. Thus, for
example, the macro mtod , which converts a pointer to an mbuf to a pointer to the data stored in the mbuf,
has the form
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#define mtod(x,t) ((t)((int)(x) + (x)->m_off))

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assignment).

In addition to storing data directly in the mbuf’s data area, data of page size may be also be stored in a
separate area of memory. The mbuf utility routines maintain a pool of pages for this purpose and mani-
pulate a private page map for such pages. The virtual addresses of these data pages precede those of
mbufs, so when pages of data are separated from an mbuf, the mbuf data offset is a negative value. An
array of reference counts on pages is also maintained so that copies of pages may be made without core to
core copying (copies are created simply by duplicating the relevant page table entries in the data page
map and incrementing the associated reference counts for the pages). Separate data pages are currently
used only when copying data from a user process into the kernel, and when bringing data in at the
hardware level. Routines which manipulate mbufs are not normally aware if data is stored directly in the
mbuf data array, or if it is kept in separate pages.

The following utility routines are available for manipulating mbuf chains:

m = m_copy(m0, off, len);
The m_copy routine create a copy of all, or part, of a list of the mbufs in m0 . Len bytes of data,
starting off bytes from the front of the chain, are copied. Where possible, reference counts on pages
are used instead of core to core copies. The original mbuf chain must have at least off + len bytes of
data. If len is specified as M_COPYALL, all the data present, offset as before, is copied.

m_cat(m, n);
The mbuf chain, n , is appended to the end of m . Where possible, compaction is performed.

m_adj(m, diff);
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are shaved off
the front of the mbuf chain. If diff is negative, the alteration is performed from back to front. No
space is reclaimed in this operation, alterations are accomplished by changing the m_len and m_off
fields of mbufs.

m = m_pullup(m0, size);
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is guaranteed to have
at least size bytes of data in contiguous memory (allowing access via a pointer, obtained using the
mtod macro). If the original data was less than size bytes long, len was greater than the size of an
mbuf data area (112 bytes), or required resources were unavailable, m is 0 and the original mbuf
chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For example, if
a packet is received and only 8 of the necessary 16 bytes required for a valid packet header are
present at the head of the list of mbufs representing the packet, the remaining 8 bytes may be ‘‘pulled
up’’ with a single m_pullup call. If the call fails the invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the mbuf associ-
ated with a data area by masking off the low bits of the virtual address. This allows modules to store data
structures in mbufs and pass them around without concern for locating the original mbuf when it comes
time to free the structure. The dtom macro is used to convert a pointer into an mbuf’s data area to a
pointer to the mbuf,

#define dtom(x) ((struct mbuf *)((int)x & ˜(MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets, as well as memory allocated for
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packets. Statistics are maintained on mbuf usage and can be viewed by users using the netstat(8) program.

6. Internal Layering

The internal structure of the network system is divided into three layers. These layers correspond to the
services provided by the socket abstraction, those provided by the communication protocols, and those
provided by the hardware interfaces. The communication protocols are normally layered into two or more
individual cooperating layers, though they are collectively viewed in the system as one layer providing
services supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the interfaces each must
conform to.

6.1. Socket Layer

The socket layer deals with the interprocess communications facilities provided by the system. A socket
is a bidirectional endpoint of communication which is ‘‘typed’’ by the semantics of communication it
supports. The system calls described in the System Interface Overview are used to manipulate sockets.

A socket consists of the following data structure:

struct socket {
short so_type; /* generic type */
short so_options; /* from socket call */
short so_linger; /* time to linger while closing */
short so_state; /* internal state flags */
caddr_t so_pcb; /* protocol control block */
struct protosw *so_proto; /* protocol handle */
struct socket *so_head; /* back pointer to accept socket */
struct socket *so_q0; /* queue of partial connections */
short so_q0len; /* partials on so_q0 */
struct socket *so_q; /* queue of incoming connections */
short so_qlen; /* number of connections on so_q */
short so_qlimit; /* max number queued connections */
struct sockbuf so_snd; /* send queue */
struct sockbuf so_rcv; /* receive queue */
short so_timeo; /* connection timeout */
u_short so_error; /* error affecting connection */
short so_oobmark; /* chars to oob mark */
short so_pgrp; /* pgrp for signals */

};

Sun Microsystems Release 2.0



Network Implementation Page 5

Each socket contains two data queues, so_rcv and so_snd, and a pointer to routines which provide sup-
porting services. The type of the socket, so_type is defined at socket creation time and used in selecting
those services which are appropriate to support it. The supporting protocol is selected at socket creation
time and recorded in the socket data structure for later use. Protocols are defined by a table of procedures,
the protosw structure, which will be described in detail later. A pointer to a protocol specific data struc-
ture, the ‘‘protocol control block’’ is also present in the socket structure. Protocols control this data struc-
ture and it normally includes a back pointer to the parent socket structure(s) to allow easy lookup when
returning information to a user (for example, placing an error number in the so_error field). The other
entries in the socket structure are used in queueing connection requests, validating user requests, storing
socket characteristics (for example, options supplied at the time a socket is created), and maintaining a
socket’s state.

Processes ‘‘rendezvous at a socket’’ in many instances. For instance, when a process wishes to extract
data from a socket’s receive queue and it is empty, or lacks sufficient data to satisfy the request, the pro-
cess blocks, supplying the address of the receive queue as an ‘‘wait channel’ to be used in notification.
When data arrives for the process and is placed in the socket’s queue, the blocked process is identified by
the fact it is waiting ‘‘on the queue’’.

6.1.1. Socket State

A socket’s state is defined from the following:
#define SS_NOFDREF 0x001 /* no file table ref any more */
#define SS_ISCONNECTED 0x002 /* socket connected to a peer */
#define SS_ISCONNECTING 0x004 /* in process of connecting to peer */
#define SS_ISDISCONNECTING 0x008 /* in process of disconnecting */
#define SS_CANTSENDMORE 0x010 /* can’t send more data to peer */
#define SS_CANTRCVMORE 0x020 /* can’t receive more data from peer */
#define SS_CONNAWAITING 0x040 /* connections awaiting acceptance */
#define SS_RCVATMARK 0x080 /* at mark on input */
#define SS_PRIV 0x100 /* privileged */
#define SS_NBIO 0x200 /* non-blocking ops */
#define SS_ASYNC 0x400 /* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system calls). When a
socket is created the state is defined based on the type of input/output the user wishes to perform. ‘‘Non-
blocking’’ I/O implies a process should never be blocked to await resources. Instead, any call which
would block returns prematurely with the error EWOULDBLOCK (the service request may be partially
fulfilled, for example, a request for more data than is present).

If a process requested ‘‘asynchronous’’ notification of events related to the socket the SIGIO signal is
posted to the process. An event is a change in the socket’s state, examples of such occurances are: space
becoming available in the send queue, new data available in the receive queue, connection establishment
or disestablishment, etc.

A socket may be marked ‘‘priviledged’’ if it was created by the super-user. Only priviledged sockets may
send broadcast packets, or bind addresses in priviledged portions of an address space.
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6.1.2. Socket Data Queues

A socket’s data queue contains a pointer to the data stored in the queue and other entries related to the
management of the data. The following structure defines a data queue:
struct sockbuf {

short sb_cc; /* actual chars in buffer */
short sb_hiwat; /* max actual char count */
short sb_mbcnt; /* chars of mbufs used */
short sb_mbmax; /* max chars of mbufs to use */
short sb_lowat; /* low water mark */
short sb_timeo; /* timeout */
struct mbuf *sb_mb; /* the mbuf chain */
struct proc *sb_sel; /* process selecting read/write */
short sb_flags; /* flags, see below */

};

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as high and low water
marks are used by the protocols in controlling the flow of data. The socket routines cooperate in imple-
menting the flow control policy by blocking a process when it requests to send data and the high water
mark has been reached, or when it requests to receive data and less than the low water mark is present
(assuming non-blocking I/O has not been specified).

When a socket is created, the supporting protocol ‘‘reserves’’ space for the send and receive queues of the
socket. The actual storage associated with a socket queue may fluctuate during a socket’s lifetime, but is
assumed this reservation will always allow a protocol to acquire enough memory to satisfy the high water
marks.

The timeout and select values are manipulated by the socket routines in implementing various portions of
the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring resources;
#define SB_LOCK 0x01 /* lock on data queue (so_rcv only) */
#define SB_WANT 0x02 /* someone is waiting to lock */
#define SB_WAIT 0x04 /* someone is waiting for data/space */
#define SB_SEL 0x08 /* buffer is selected */
#define SB_COLL 0x10 /* collision selecting */

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket Connection Queueing

In dealing with connection oriented sockets (for example, SOCK_STREAM) the two sides are considered
distinct. One side is termed active, and generates connection requests. The other side is called passive and
accepts connection requests.

From the passive side, a socket is created with the option SO_ACCEPTCONN specified, creating two
queues of sockets: so_q0 for connections in progress and so_q for connections already made and awaiting
user acceptance. As a protocol is preparing incoming connections, it creates a socket structure queued on
so_q0 by calling the routine sonewconn(). When the connection is established, the socket structure is then
transfered to so_q, making it available for an accept.

If an SO_ACCEPTCONN socket is closed with sockets on either so_q0 or so_q, these sockets are
dropped.
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6.2. Protocol Layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics, some of which
are used in deciding which socket type(s) they may support.

An entry in the ‘‘protocol switch’’ table exists for each protocol module configured into the system. It has
the following form:
struct protosw {

short pr_type; /* socket type used for */
short pr_family; /* protocol family */
short pr_protocol; /* protocol number */
short pr_flags; /* socket visible attributes */

/* protocol-protocol hooks */
int (*pr_input)(); /* input to protocol (from below) */
int (*pr_output)(); /* output to protocol (from above) */
int (*pr_ctlinput)(); /* control input (from below) */
int (*pr_ctloutput)(); /* control output (from above) */

/* user-protocol hook */
int (*pr_usrreq)(); /* user request */

/* utility hooks */
int (*pr_init)(); /* initialization routine */
int (*pr_fasttimo)(); /* fast timeout (200ms) */
int (*pr_slowtimo)(); /* slow timeout (500ms) */
int (*pr_drain)(); /* flush any excess space possible */

};

A protocol is called through the pr_init entry before any other. Thereafter it is called every 200 mil-
liseconds through the pr_fasttimo entry and every 500 milliseconds through the pr_slowtimo for timer
based actions. The system will call the pr_drain entry if it is low on space and this should throw away
any non-critical data.

Protocols pass data between themselves as chains of mbufs using the pr_input and pr_output routines.
Pr_input passes data up (towards the user) and pr_output passes it down (towards the network); control
information passes up and down on pr_ctlinput and pr_ctloutput. The protocol is responsible for the
space occupied by any the arguments to these entries and must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.

The pr_flags field is constructed from the following values:
#define PR_ATOMIC 0x01 /* exchange atomic messages only */
#define PR_ADDR 0x02 /* addresses given with messages */
#define PR_CONNREQUIRED 0x04 /* connection required by protocol */
#define PR_WANTRCVD 0x08 /* want PRU_RCVD calls */
#define PR_RIGHTS 0x10 /* passes capabilities */
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Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket routines
will never attempt to send data before a connection has been established. If the PR_WANTRCVD flag is
set, the socket routines will notfiy the protocol when the user has removed data from the socket’s receive
queue. This allows the protocol to implement acknowledgement on user receipt, and also update window-
ing information based on the amount of space available in the receive queue. The PR_ADDR field indi-
cates any data placed in the socket’s receive queue will be preceded by the address of the sender. The
PR_ATOMIC flag specifies each user request to send data must be performed in a single protocol send
request; it is the protocol’s responsibility to maintain record boundaries on data to be sent. The
PR_RIGHTS flag indicates the protocol supports the passing of capabilities; this is currently used only
the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an appropriate protocol
to support the type of socket being created. The pr_type field contains one of the possible socket types
(for example, SOCK_STREAM), while the pr_family field indicates which protocol family the protocol
belongs to. The pr_protocol field contains the protocol number of the protocol, normally a well known
value.

6.3. Network-Interface Layer

Each network-interface configured into a system defines a path through which packets may be sent and
received. Normally a hardware device is associated with this interface, though there is no requirement for
this (for example, all systems have a software ‘‘loopback’’ interface used for debugging and performance
analysis). In addition to manipulating the hardware device, an interface module is responsible for encap-
sulation and deencapsulation of any low level header information required to deliver a message to it’s
destination. The selection of which interface to use in delivering packets is a routing decision carried out
at a higher level than the network-interface layer. Each interface normally identifies itself at boot time to
the routing module so that it may be selected for packet delivery.

An interface is defined by the following structure,
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struct ifnet {
char *if_name; /* name, for example, "en" or "lo" */
short if_unit; /* sub-unit for lower level driver */
short if_mtu; /* maximum transmission unit */
int if_net; /* network number of interface */
short if_flags; /* up/down, broadcast, etc. */
short if_timer; /* time ’til if_watchdog called */
int if_host[2]; /* local net host number */
struct sockaddr if_addr; /* address of interface */
union {

struct sockaddr ifu_broadaddr;
struct sockaddr ifu_dstaddr;

} if_ifu;
struct ifqueue if_snd; /* output queue */
int (*if_init)(); /* init routine */
int (*if_output)(); /* output routine */
int (*if_ioctl)(); /* ioctl routine */
int (*if_reset)(); /* bus reset routine */
int (*if_watchdog)(); /* timer routine */
int if_ipackets; /* packets received on interface */
int if_ierrors; /* input errors on interface */
int if_opackets; /* packets sent on interface */
int if_oerrors; /* output errors on interface */
int if_collisions; /* collisions on csma interfaces */
struct ifnet *if_next;

};

Each interface has a send queue and routines used for initialization, if_init, and output, if_output. If the
interface resides on a system bus, the routine if_reset will be called after a bus reset has been performed.
An interface may also specify a timer routine, if_watchdog, which should be called every if_timer
seconds (if non-zero).

The state of an interface and certain characteristics are stored in the if_flags field. The following values
are possible:
#define IFF_UP 0x1 /* interface is up */
#define IFF_BROADCAST 0x2 /* broadcast address valid */
#define IFF_DEBUG 0x4 /* turn on debugging */
#define IFF_ROUTE 0x8 /* routing entry installed */
#define IFF_POINTOPOINT 0x10 /* interface is point-to-point link */
#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */
#define IFF_RUNNING 0x40 /* resources allocated */

If the interface is connected to a network which supports transmission of broadcast packets, the
IFF_BROADCAST flag will be set and the if_broadaddr field will contain the address to be used in send-
ing or accepting a broadcast packet. If the interface is associated with a point to point hardware link (for
example, a DEC DMR-11), the IFF_POINTOPOINT flag will be set and if_dstaddr will contain the
address of the host on the other side of the connection. These addresses and the local address of the inter-
face, if_addr, are used in filtering incoming packets. The interface sets IFF_RUNNING after it has allo-
cated system resources and posted an initial read on the device it manages. This state bit is used to avoid
multiple allocation requests when an interface’s address is changed. The IFF_NOTRAILERS flag indi-
cates the interface should refrain from using a trailer encapsulation on outgoing packets.

The information stored in an ifnet structure for point to point communication devices is not currently used
by the system internally. Rather, it is used by the user level routing process in determining host network
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connections and in initially devising routes (refer to chapter 10 for more information).

Various statistics are also stored in the interface structure. These may be viewed by users using the
netstat(1) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS ioctls. SIOCSI-
FADDR is used to initially define each interface’s address; SIOGSIFFLAGS can be used to mark an
interface down and perform site-specific configuration.

7. Socket/Protocol Interface

The interface between the socket routines and the communication protocols is through the pr_usrreq rou-
tine defined in the protocol switch table. The following requests to a protocol module are possible:
#define PRU_ATTACH 0 /* attach protocol */
#define PRU_DETACH 1 /* detach protocol */
#define PRU_BIND 2 /* bind socket to address */
#define PRU_LISTEN 3 /* listen for connection */
#define PRU_CONNECT 4 /* establish connection to peer */
#define PRU_ACCEPT 5 /* accept connection from peer */
#define PRU_DISCONNECT 6 /* disconnect from peer */
#define PRU_SHUTDOWN 7 /* won’t send any more data */
#define PRU_RCVD 8 /* have taken data; more room now */
#define PRU_SEND 9 /* send this data */
#define PRU_ABORT 10 /* abort (fast DISCONNECT, DETATCH) */
#define PRU_CONTROL 11 /* control operations on protocol */
#define PRU_SENSE 12 /* return status into m */
#define PRU_RCVOOB 13 /* retrieve out of band data */
#define PRU_SENDOOB 14 /* send out of band data */
#define PRU_SOCKADDR 15 /* fetch socket’s address */
#define PRU_PEERADDR 16 /* fetch peer’s address */
#define PRU_CONNECT2 17 /* connect two sockets */
/* begin for protocols internal use */
#define PRU_FASTTIMO 18 /* 200ms timeout */
#define PRU_SLOWTIMO 19 /* 500ms timeout */
#define PRU_PROTORCV 20 /* receive from below */
#define PRU_PROTOSEND 21 /* send to below */

A call on the user request routine is of the form,
error = (*protosw[].pr_usrreq)(up, req, m, addr, rights);

int error;
struct socket *up;
int req;
struct mbuf *m, *rights;
caddr_t addr;
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The mbuf chain, m, and the address are optional parameters. The rights parameter is an optional pointer
to an mbuf chain containing user specified capabilities (see the sendmsg and recvmsg system calls). The
protocol is responsible for disposal of both mbuf chains. A non-zero return value gives a UNIX error
number which should be passed to higher level software. The following paragraphs describe each of the
requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socket system call) the protocol module is called with
this request. It is the responsibility of the protocol module to allocate any resources necessary. The
‘‘attach’’ request will always precede any of the other requests, and should not occur more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted. The protocol
module may deallocate any resources assigned to the socket.

PRU_BIND
When a socket is initially created it has no address bound to it. This request indicates an address
should be bound to an existing socket. The protocol module must verify the requested address is
valid and available for use.

PRU_LISTEN
The ‘‘listen’’ request indicates the user wishes to listen for incoming connection requests on the asso-
ciated socket. The protocol module should perform any state changes needed to carry out this
request (if possible). A ‘‘listen’’ request always precedes a request to accept a connection.

PRU_CONNECT
The ‘‘connect’’ request indicates the user wants to establish an association. The addr parameter sup-
plied describes the peer to be connected to. The effect of a connect request may vary depending on
the protocol. Virtual circuit protocols, such as TCP [Postel80b], use this request to initiate establish-
ment of a TCP connection. Datagram protocols, such as UDP [Postel79], simply record the peer’s
address in a private data structure and use it to tag all outgoing packets. There are no restrictions on
how many times a connect request may be used after an attach. If a protocol supports the notion of
multi-casting, it is possible to use multiple connects to establish a multi-cast group. Alternatively, an
association may be broken by a PRU_DISCONNECT request, and a new association created with a
subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more connections, this
request is made to indicate the user has accepted the first connection on the queue of pending connec-
tions. The protocol module should fill in the supplied address buffer with the address of the con-
nected party.

PRU_DISCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parameter indicates
the direction of the shutdown, as encoded in the soshutdown system call). The protocol may, at its
discretion, deallocate any data structures related to the shutdown.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes the
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PR_WANTRCVD flag. When a user removes data from the receive queue this request will be sent to
the protocol module. It may be used to trigger acknowledgements, refresh windowing information,
initiate data transfer, etc.

PRU_SEND
Each user request to send data is translated into one or more PRU_SEND requests (a protocol may
indicate a single user send request must be translated into a single PRU_SEND request by specifying
the PR_ATOMIC flag in its protocol description). The data to be sent is presented to the protocol as
a list of mbufs and an address is, optionally, supplied in the addr parameter. The protocol is responsi-
ble for preserving the data in the socket’s send queue if it is not able to send it immediately, or if it
may need it at some later time (for example, for retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any existing
association(s).

PRU_CONTROL
The ‘‘control’’ request is generated when a user performs a UNIX ioctl system call on a socket (and
the ioctl is not intercepted by the socket routines). It allows protocol-specific operations to be pro-
vided outside the scope of the common socket interface. The addr parameter contains a pointer to a
static kernel data area where relevant information may be obtained or returned. The m parameter
contains the actual ioctl request code (note the non-standard calling convention).

PRU_SENSE
The ‘‘sense’’ request is generated when the user makes an fstat system call on a socket; it requests
status of the associated socket. There currently is no common format for the status returned. Informa-
tion which might be returned includes per-connection statistics, protocol state, resources currently in
use by the connection, the optimal transfer size for the connection (based on windowing information
and maximum packet size). The addr parameter contains a pointer to a static kernel data area where
the status buffer should be placed.

PRU_RCVOOB
Any ‘‘out-of-band’’ data presently available is to be returned. An mbuf is passed in to the protocol
module and the protocol should either place data in the mbuf or attach new mbufs to the one supplied
if there is insufficient space in the single mbuf.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The address format
(protocol specific) is returned in the addr parameter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be in a
SS_ISCONNECTED state for this request to be made to the protocol. The address format (protocol
specific) is returned in the addr parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection between the two
without binding any addresses, if possible. This call is used in implementing the socketpair(2) sys-
tem call.
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The following requests are used internally by the protocol modules and are never generated by the socket
routines. In certain instances, they are handed to the pr_usrreq routine solely for convenience in tracing a
protocol’s operation (for example, PRU_SLOWTIMO).

PRU_FASTTIMO
A ‘‘fast timeout’’ has occured. This request is made when a timeout occurs in the protocol’s
pr_fastimo routine. The addr parameter indicates which timer expired.

PRU_SLOWTIMO
A ‘‘slow timeout’’ has occured. This request is made when a timeout occurs in the protocol’s
pr_slowtimo routine. The addr parameter indicates which timer expired.

PRU_PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests reception of
data destined for the protocol and not the user. No protocols currently use this facility.

PRU_PROTOSEND
This request allows a protocol to send data destined for another protocol module, not a user. The
details of how data is marked ‘‘addressed to protocol’’ instead of ‘‘addressed to user’’ are left to the
protocol modules. No protocols currently use this facility.

8. Protocol/Protocol Interface

The interface between protocol modules is through the pr_usrreq, pr_input, pr_output, pr_ctlinput, and
pr_ctloutput routines. The calling conventions for all but the pr_usrreq routine are expected to be specific
to the protocol modules and are not guaranteed to be consistent across protocol families. We will examine
the conventions used for some of the Internet protocols in this section as an example.

8.1. pr_output

The Internet protocol UDP uses the convention,

error = udp_output(inp, m);
int error;
struct inpcb *inp;
struct mbuf *m;

where the inp, ‘‘internet protocol control block’’, passed between modules conveys per connection state
information, and the mbuf chain contains the data to be sent. UDP performs consistency checks, appends
its header, calculates a checksum, etc. before passing the packet on to the IP module:
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error = ip_output(m, opt, ro, allowbroadcast);
int error;
struct mbuf *m, *opt;
struct route *ro;
int allowbroadcast;

The call to IP’s output routine is more complicated than that for UDP, as befits the additional work the IP
module must do. The m parameter is the data to be sent, and the opt parameter is an optional list of IP
options which should be placed in the IP packet header. The ro parameter is is used in making routing
decisions (and passing them back to the caller). The final parameter, allowbroadcast is a flag indicating if
the user is allowed to transmit a broadcast packet. This may be inconsequential if the underlying
hardware does not support the notion of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occured which could be
immediately detected (no buffer space available, no route to destination, etc.).

8.2. pr_input

Both UDP and TCP use the following calling convention,

(void) (*protosw[].pr_input)(m);
struct mbuf *m;

Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a software interrupt level routine, and so is not called with any parameters. It
instead communicates with network interfaces through a queue, ipintrq, which is identical in structure to
the queues used by the network interfaces for storing packets awaiting transmission.

8.3. pr_ctlinput

This routine is used to convey ‘‘control’’ information to a protocol module (i.e. information which might
be passed to the user, but is not data). This routine, and the pr_ctloutput routine, have not been exten-
sively developed, and thus suffer from a ‘‘clumsiness’’ that can only be improved as more demands are
placed on it.

The common calling convention for this routine is,

(void) (*protosw[].pr_ctlinput)(req, info);
int req;
caddr_t info;

The req parameter is one of the following,
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#define PRC_IFDOWN 0 /* interface transition */
#define PRC_ROUTEDEAD 1 /* select new route if possible */
#define PRC_QUENCH 4 /* some said to slow down */
#define PRC_HOSTDEAD 6 /* normally from IMP */
#define PRC_HOSTUNREACH 7 /* ditto */
#define PRC_UNREACH_NET 8 /* no route to network */
#define PRC_UNREACH_HOST 9 /* no route to host */
#define PRC_UNREACH_PROTOCOL 10 /* dst says bad protocol */
#define PRC_UNREACH_PORT 11 /* bad port # */
#define PRC_MSGSIZE 12 /* message size forced drop */
#define PRC_REDIRECT_NET 13 /* net routing redirect */
#define PRC_REDIRECT_HOST 14 /* host routing redirect */
#define PRC_TIMXCEED_INTRANS 17 /* packet lifetime expired in transit */
#define PRC_TIMXCEED_REASS 18 /* lifetime expired on reass q */
#define PRC_PARAMPROB 19 /* header incorrect */

while the info parameter is a ‘‘catchall’’ value which is request dependent. Many of the requests have
obviously been derived from ICMP (the Internet Control Message Protocol), and from error messages
defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist to convert control requests to
UNIX error codes which are delivered to a user.

8.4. pr_ctloutput

This routine is not currently used by any protocol modules.

9. Protocol/Network-Interface Interface

The lowest layer in the set of protocols which comprise a protocol family must interface itself to one or
more network interfaces in order to transmit and receive packets. It is assumed that any routing decisions
have been made before handing a packet to a network interface, in fact this is absolutely necessary in
order to locate any interface at all (unless, of course, one uses a single ‘‘hardwired’’ interface). There are
two cases to be concerned with, transmission of a packet, and receipt of a packet; each will be considered
separately.

9.1. Packet Transmission

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it transmits a fully formatted
packet with the following call,

error = (*ifp->if_output)(ifp, m, dst)
int error;
struct ifnet *ifp;
struct mbuf *m;
struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dst address, or returns an error
indication (a UNIX error number). In reality transmission may not be immediate, or successful; normally
the output routine simply queues the packet on its send queue and primes an interrupt driven routine to
actually transmit the packet. For unreliable mediums, such as the Ethernet, ‘‘successful’’ transmission
simply means the packet has been placed on the cable without a collision. On the other hand, an 1822
interface guarantees proper delivery or an error indication for each message transmitted.

Sun Microsystems Release 2.0



Page 16 Network Implementation

The model employed in the networking system attaches no promises of delivery to the packets handed to
a network interface, and thus corresponds more closely to the Ethernet. Errors returned by the output rou-
tine are normally trivial in nature (no buffer space, address format not handled, etc.).

9.2. Packet Reception

Each protocol family must have one or more ‘‘lowest level’’ protocols. These protocols deal with inter-
network addressing and are responsible for the delivery of incoming packets to the proper protocol pro-
cessing modules. In the PUP model [Boggs78] these protocols are termed Level 1 protocols, in the ISO
model, network layer protocols. In our system each such protocol module has an input packet queue
assigned to it. Incoming packets received by a network interface are queued up for the protocol module
and a software interrupt is posted to initiate processing.

Three macros are available for queueing and dequeueing packets,

IF_ENQUEUE(ifq, m)
This places the packet m at the tail of the queue ifq.

IF_DEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue ifq in m. A zero value will be returned in m if
the queue is empty.

IF_PREPEND(ifq, m)
This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple form of congestion control. The macro
IF_QFULL(ifq) returns 1 if the queue is filled, in which case the macro IF_DROP(ifq) should be used to
bump a count of the number of packets dropped and the offending packet dropped. For example, the fol-
lowing code fragment is commonly found in a network interface’s input routine,

if (IF_QFULL(inq)) {
IF_DROP(inq);
m_freem(m);

} else
IF_ENQUEUE(inq, m);

10. Gateways and Routing Issues

The system has been designed with the expectation that it will be used in an internetwork environment.
The ‘‘canonical’’ environment was envisioned to be a collection of local area networks connected at one
or more points through hosts with multiple network interfaces (one on each local area network), and pos-
sibly a connection to a long haul network (for example, the ARPANET). In such an environment, issues
of gatewaying and packet routing become very important. Certain of these issues, such as congestion con-
trol, have been handled in a simplistic manner or specifically not addressed. Instead, where possible, the
network system attempts to provide simple mechanisms upon which more involved policies may be
implemented. As some of these problems become better understood, the solutions developed will be
incorporated into the system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms provided
for congestion control are described in chapter 12.
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10.1. Routing Tables

The network system maintains a set of routing tables for selecting a network interface to use in delivering
a packet to its destination. These tables are of the form:
struct rtentry {

u_long rt_hash; /* hash key for lookups */
struct sockaddr rt_dst; /* destination net or host */
struct sockaddr rt_gateway; /* forwarding agent */
short rt_flags; /* see below */
short rt_refcnt; /* no. of references to structure */
u_long rt_use; /* packets sent using route */
struct ifnet *rt_ifp; /* interface to give packet to */

};

The routing information is organized in two separate tables, one for routes to a host and one for routes to
a network. The distinction between hosts and networks is necessary so that a single mechanism may be
used for both broadcast and multi-drop type networks, and also for networks built from point-to-point
links (e.g DECnet [DEC80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by routines
defined for each address family; one based on the destination being a host, and one assuming the target is
the network portion of the address. Each hash value is used to locate a hash chain to search (by taking the
value modulo the hash table size) and the entire 32-bit value is then used as a key in scanning the list of
routes. Lookups are applied first to the routing table for hosts, then to the routing table for networks. If
both lookups fail, a final lookup is made for a ‘‘wildcard’’ route (by convention, network 0). By doing
this, routes to a specific host on a network may be present as well as routes to the network. This also
allows a ‘‘fall back’’ network route to be defined to an ‘‘smart’’ gateway which may then perform more
intelligent routing.

Each routing table entry contains a destination (who’s at the other end of the route), a gateway to send the
packet to, and various flags which indicate the route’s status and type (host or network). A count of the
number of packets sent using the route is kept for use in deciding between multiple routes to the same
destination (see below), and a count of ‘‘held references’’ to the dynamically allocated structure is main-
tained to insure memory reclamation occurs only when the route is not in use. Finally a pointer to the a
network interface is kept; packets sent using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as ‘‘direct’’ or ‘‘indirect’’. The host/network
distinction determines how to compare the rt_dst field during lookup. If the route is to a network, only a
packet’s destination network is compared to the rt_dst entry stored in the table. If the route is to a host,
the addresses must match bit for bit.

The distinction between ‘‘direct’’ and ‘‘indirect’’ routes indicates whether the destination is directly con-
nected to the source. This is needed when performing local network encapsulation. If a packet is destined
for a peer at a host or network which is not directly connected to the source, the internetwork packet
header will indicate the address of the eventual destination, while the local network header will indicate
the address of the intervening gateway.
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Should the destination be directly connected, these addresses are likely to be identical, or a mapping
between the two exists. The RTF_GATEWAY flag indicates the route is to an ‘‘indirect’’ gateway agent
and the local network header should be filled in from the rt_gateway field instead of rt_dst, or from the
internetwork destination address.

It is assumed multiple routes to the same destination will not be present unless they are deemed equal in
cost (the current routing policy process never installs multiple routes to the same destination). However,
should multiple routes to the same destination exist, a request for a route will return the ‘‘least used’’
route based on the total number of packets sent along this route. This can result in a ‘‘ping-pong’’ effect
(alternate packets taking alternate routes), unless protocols ‘‘hold onto’’ routes until they no longer find
them useful; either because the destination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table entries as well as
dynamically create new routing table entries. On hosts where exhaustive routing information is too
expensive to maintain (for example, work stations), the combination of wildcard routing entries and rout-
ing redirect messages can be used to provide a simple routing management scheme without the use of a
higher level policy process. Statistics are kept by the routing table routines on the use of routing redirect
messages and their affect on the routing tables. These statistics may be viewed using netstat (1).

Status information other than routing redirect control messages may be used in the future, but at present
they are ignored. Likewise, more intelligent ‘‘metrics’’ may be used to describe routes in the future, pos-
sibly based on bandwidth and monetary costs.

10.2. Routing Table Interface

A protocol accesses the routing tables through three routines, one to allocate a route, one to free a route,
and one to process a routing redirect control message. The routine rtalloc performs route allocation; it is
called with a pointer to the following structure,

struct route {
struct rtentry *ro_rt;
struct sockaddr ro_dst;

};

The route returned is assumed ‘‘held’’ by the caller until disposed of with an rtfree P call. Protocols
which implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit’s lifetime,
while connection-less protocols, such as UDP, currently allocate and free routes on each transmission.

The routine rtredirect is called to process a routing redirect control message. It is called with a destination
address and the new gateway to that destination. If a non-wildcard route exists to the destination, the gate-
way entry in the route is modified to point at the new gateway supplied. Otherwise, a new routing table
entry is inserted reflecting the information supplied. Routes to interfaces and routes to gateways which are
not directly accesible from the host are ignored.

10.3. User-Level Routing Policies

Routing policies implemented in user processes manipulate the kernel routing tables through two ioctl
calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries, respectively; the
tables are read through the /dev/kmem device. The decision to place policy decisions in a user process
implies routing table updates may lag a bit behind the identification of new routes, or the failure of exist-
ing routes, but this period of instability is normally very small with proper implementation of the routing
process. Advisory information, such as ICMP error messages and IMP diagnostic messages, may be read
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from raw sockets (described in the next section).

One routing policy process has already been implemented. The system standard ‘‘routing daemon’’ uses
a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up to date routing tables
in our local environment. Interaction with other existing routing protocols, such as the Internet GGP
(Gateway-Gateway Protocol), may be accomplished using a similar process.

11. Raw Sockets

A raw socket is a mechanism which allows users direct access to a lower level protocol. Raw sockets are
intended for knowledgeable processes which wish to take advantage of some protocol feature not directly
accessible through the normal interface, or for the development of new protocols built atop existing lower
level protocols. For example, a new version of TCP might be developed at the user level by utilizing a
raw IP socket for delivery of packets. The raw IP socket interface attempts to provide an identical inter-
face to the one a protocol would have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly) augmented by
protocol-specific processing routines. This section will describe the core of the raw socket interface.

11.1. Control Blocks

Every raw socket has a protocol control block of the following form,
struct rawcb {

struct rawcb *rcb_next; /* doubly linked list */
struct rawcb *rcb_prev;
struct socket *rcb_socket; /* back pointer to socket */
struct sockaddr rcb_faddr; /* destination address */
struct sockaddr rcb_laddr; /* socket’s address */
caddr_t rcb_pcb; /* protocol specific stuff */
short rcb_flags;

};

All the control blocks are kept on a doubly linked list for performing lookups during packet dispatch.
Associations may be recorded in the control block and used by the output routine in preparing packets for
transmission. The addresses are also used to filter packets on input; this will be described in more detail
shortly. If any protocol specific information is required, it may be attached to the control block using the
rcb_pcb field.

A raw socket interface is datagram oriented. That is, each send or receive on the socket requires a destina-
tion address. This address may be supplied by the user or stored in the control block and automatically
installed in the outgoing packet by the output routine. Since it is not possible to determine whether an
address is present or not in the control block, two flags, RAW_LADDR and RAW_FADDR, indicate if a
local and foreign address are present. Another flag, RAW_DONTROUTE, indicates if routing should be
performed on outgoing packets. If it is, a route is expected to be allocated for each ‘‘new’’ destination
address. That is, the first time a packet is transmitted a route is determined, and thereafter each time the
destination address stored in rcb_route differs from rcb_faddr, or rcb_route.ro_rt is zero, the old route is
discarded and a new one allocated.
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11.2. Input Processing

Input packets are ‘‘assigned’’ to raw sockets based on a simple pattern matching scheme. Each network
interface or protocol gives packets to the raw input routine with the call:

raw_input(m, proto, src, dst)
struct mbuf *m;
struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {
struct sockproto raw_proto;
struct sockaddr raw_dst;
struct sockaddr raw_src;

};

and it is placed in a packet queue for the ‘‘raw input protocol’’ module. Packets taken from this queue
are copied into any raw sockets that match the header according to the following rules,

1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that found in the packet header.

3) If a local address is defined for the socket, the address format of the local address is the same as the
destination address’s and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket’s foreign address and the packet’s source address.

A basic assumption is that addresses present in the control block and packet header (as constructed by the
network interface and any raw input protocol module) are in a canonical form which may be ‘‘block com-
pared’’.

11.3. Output Processing

On output the raw pr_usrreq routine passes the packet and raw control block to the raw protocol output
routine for any processing required before it is delivered to the appropriate network interface. The output
routine is normally the only code required to implement a raw socket interface.

12. Buffering and Congestion Control

One of the major factors in the performance of a protocol is the buffering policy used. Lack of a proper
buffering policy can force packets to be dropped, cause falsified windowing information to be emitted by
protocols, fragment host memory, degrade the overall host performance, etc. Due to problems such as
these, most systems allocate a fixed pool of memory to the networking system and impose a policy optim-
ized for ‘‘normal’’ network operation.

The networking system developed for UNIX is little different in this respect. At boot time a fixed amount
of memory is allocated by the networking system. At later times more system memory may be requested
as the need arises, but at no time is memory ever returned to the system. It is possible to garbage collect
memory from the network, but difficult. In order to perform this garbage collection properly, some por-
tion of the network will have to be ‘‘turned off’’ as data structures are updated. The interval over which
this occurs must kept small compared to the average inter-packet arrival time, or too much traffic may be
lost, impacting other hosts on the network, as well as increasing load on the interconnecting mediums. In
our environment we have not experienced a need for such compaction, and thus have left the problem

Sun Microsystems Release 2.0



Network Implementation Page 21

unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given of the
allocation mechanisms, and policies used by the protocols in performing connection level buffering.

12.1. Memory Management

The basic memory allocation routines place no restrictions on the amount of space which may be allo-
cated. Any request made is filled until the system memory allocator starts refusing to allocate additional
memory. When the current quota of memory is insufficient to satisfy an mbuf allocation request, the allo-
cator requests enough new pages from the system to satisfy the current request only. All memory owned
by the network is described by a private page table used in remapping pages to be logically contiguous as
the need arises. In addition, an array of reference counts parallels the page table and is used when multi-
ple copies of a page are present.

Mbufs are 128 byte structures, 16 fitting in a 2048 byte page of memory. When data is placed in mbufs, if
possible, it is copied or remapped into logically contiguous pages of memory from the network page pool.
Data smaller than the size of a page is copied into one or more 112 byte mbuf data areas.

12.2. Protocol Buffering Policies

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation time. These
amounts define the high and low water marks used by the socket routines in deciding when to block and
unblock a process. The reservation of space does not currently result in any action by the memory
management routines, though it is clear if one imposed an upper bound on the total amount of physical
memory allocated to the network, reserving memory would become important.
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Protocols which provide connection level flow control do this based on the amount of space in the associ-
ated socket queues. That is, send windows are calculated based on the amount of free space in the
socket’s receive queue, while receive windows are adjusted based on the amount of data awaiting
transmission in the send queue. Care has been taken to avoid the ‘‘silly window syndrome’’ described in
[Clark82] at both the sending and receiving ends.

12.3. Queue Limiting

Incoming packets from the network are always received unless memory allocation fails. However, each
Level 1 protocol input queue has an upper bound on the queue’s length, and any packets exceeding that
bound are discarded. It is possible for a host to be overwhelmed by excessive network traffic (for instance
a host acting as a gateway from a high bandwidth network to a low bandwidth network). As a ‘‘defen-
sive’’ mechanism the queue limits may be adjusted to throttle network traffic load on a host. Consider a
host willing to devote some percentage of its machine to handling network traffic. If the cost of handling
an incoming packet can be calculated so that an acceptable ‘‘packet handling rate’’ can be determined,
then input queue lengths may be dynamically adjusted based on a host’s network load and the number of
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a problem
such as this (simply dropping packets is likely to increase the load on a network); the queue lengths were
incorporated mainly as a safeguard mechanism.

12.4. Packet Forwarding

When packets can not be forwarded because of memory limitations, the system generates a ‘‘source
quench’’ message. In addition, any other problems encountered during packet forwarding are also
reflected back to the sender in the form of ICMP packets. This helps hosts avoid unneeded retransmis-
sions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of network
development, broadcast packets were forwarded and a ‘‘routing loop’’ resulted in network saturation and
every host on the network crashing.

13. Out of Band Data

Out of band data is a facility peculiar to the stream socket abstraction defined. Little agreement appears to
exist as to what its semantics should be. TCP defines the notion of ‘‘urgent data’’ as in-line, while the
NBS protocols [Burruss81] and numerous others provide a fully independent logical transmission channel
along which out of band data is to be sent. In addition, the amount of the data which may be sent as an
out of band message varies from protocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket’s notion of out of band data has been defined as the lowest reasonable common denomi-
nator (at least reasonable in our minds); clearly this is subject to debate. Out of band data is expected to
be transmitted out of the normal sequencing and flow control constraints of the data stream. A minimum
of 1 byte of out of band data and one outstanding out of band message are expected to be supported by the
protocol supporting a stream socket. It is a protocols prerogative to support larger sized messages, or
more than one outstanding out of band message at a time.

Out of band data is maintained by the protocol and usually not stored in the socket’s send queue. The
PRU_SENDOOB and PRU_RCVOOB requests to the pr_usrreq routine are used in sending and receiv-
ing data.
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Appendix A: Acknowledgements and References

The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79], while in cer-
tain places the Internet protocol family has had a great deal of influence in the design. The use of software
interrupts for process invocation is based on similar facilities found in the VMS operating system. Many
of the ideas related to protocol modularity, memory management, and network interfaces are based on
Rob Gurwitz’s TCP/IP implementation for the 4.1BSD version of UNIX on the VAX [Gurwitz81].
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