Network File System
Protocol Specification

Sun Microsystems Release 2.0

Network File System
Protocol Specification

1. Introduction

The Sun Network Filesystem (NFS) protocol provides transparent remote access to shared filesystems
over local area networks. The NFS protocol is designed to be machine, operating system, network archi-
tecture, and transport protocol independent. This independence is achieved through the use of Remote
Procedure Call (RPC) primitives built on top of an eXternal Data Representation (XDR).

The supporting mount protocol allows the server to hand out remote access privileges to a restricted set of
clients. Thus, it allows clients to attach a remote directory tree at any point on some local filesystem.

1.1. Remote Procedure Call

Sun’s remote procedure call specification, described in the RPC Programming Guide, provides a clean,
procedure-oriented interface to remote services. Each server supplies a program that is a set of pro-
cedures. The combination of host address, program number, and procedure number specifies one remote
service procedure.

RPC is a high-level protocol built on top of low-level transport protocols. It does not depend on services
provided by specific protocols, so it can be used easily with any underlying transport protocol. Currently
the only supported transport protocol is UDP/IP.

The RPC protocol includes adlot for authentication parameters on every call. The contents of the authen-
tication parameters are determined by the *‘flavor’’ (type) of authentication used by the server and client.
A server may support several different flavors of authentication at once: AUTH_NONE passes no authen-
tication information (this is called null authentication); AUTH_UNI X passes the UNIX uid, gid, and
groups with each call.

Servers have been known to change over time, and so can the protocol that they use. So RPC provides a
version number with each RPC request. Thus, one server can service requests for several different ver-
sions of the protocol at the sametime.

1.2. External Data Representation

Sun’s external data representation specification, described in the XDR Protocol Specification, provides a
common way of representing a set of data types over anetwork. This takes care of problems such as dif-
ferent byte ordering on different communicating machines. It also defines the size of each data type so
that machines with different structure alignment algorithms can share a common format over the network.

Sun Microsystems Release 2.0

Page 2 NFS Protocol Spec

In this document we use the XDR data definition language to specify the parameters and results of each
RPC service procedure that a NFS server provides. The XDR data definition language reads alot like C,
although afew new constructs have been added. The notation

string namne[Sl ZE];
string data<DSI ZE>;

defines nanme, which is afixed size block of Sl ZE bytes, and dat a, which is a variable size block of up
to DSI ZE bytes. This same notation is used to indicate fixed length arrays, and arrays with a variable
number of elements up to some maximum.

The discriminated union definition

union switch (enum status) {

NFS_CK:
struct {
filenanme filel;
filenanme file2;
i nt eger count ;
}
NFS_ERROR:
struct {
errstat error,
i nt eger errno;
}
defaul t:
struct {}

}

means the first thing over the network is an enumeration type called st at us; if itsvalueisNFS_OK, the
next thing on the network will be the structure containing fi | e1, fil e2, and count . If the value of
st at us isneither NFS_OK nor NFS_ERROR, then thereis no more data to look at.

1.3. Stateless Servers

The NFS protocol is stateless. That is, a server does not need to maintain state about any of its clients in
order to function correctly. Stateless servers have adistinct advantage over stateful serversin the event of
acrash. With stateless servers, aclient need only retry arequest until the server responds; it does not even
need to know that the server has crashed. The client of a stateful server, on the other hand, needs to
detect a server crash and rebuild the server’ s state when it comes back up.

This may not sound like an important issue, but it affects the protocol in some strange ways. We feel that
it isworth a bit of extra complexity in the protocol to be able to write very simple servers that don’t need
fancy crash recovery.

2. NFS Protocol Definition

The NFS protocol is designed to be operating system independent, but let’s face it, it was designed in a
UNIX environment. As such, it has some features which are very UNIX-ish. When in doubt about how
something should work, aquick look at how it is done on UNIX will probably put you on the right track.

The protocol definition is given as a set of procedures with arguments and results defined using XDR. A
brief description of the function of each procedure should provide enough information to alow imple-
mentation on most machines. There is a different section provided for each supported version of the

Sun Microsystems Release 2.0

NFS Protocol Spec Page 3

protocol. Most of the procedures, and their parameters and results, are self-explanatory. A few do not fit
into the normal UNIX mold, however.

The LOOKUP procedure looks up one component of a pathname at atime. It is not obvious at first why it
does not just take the whole pathname, traipse down the directories, and return a file handle when it is
done. There are two good reasons not to do this. First, pathnames need separators between the directory
components, and different operating systems use different separators. We could define a Network Stan-
dard Pathname Representation, but then every pathname would have to be parsed and converted at each
end. Second, if pathnames were passed, the server would have to keep track of the mounted filesystems
for al of its clients, so that it could break the pathname at the right point and pass the remainder on to the
correct server.

Another procedure which might seem strange to UNIX people is the READDI R procedure. What READ-
Dl R doesis provide a network standard format for representing directories. The same argument as above
could have been used to justify a READDI R procedure that returns only one directory entry per call. The
problem is efficiency. Directories can contain many entries, and a remote call to return each would just
be too slow.

2.1. Version 2

The released version of the NFS protocol is actually the second. Even in the second version, there are
various obsolete procedures and parameters, which will probably be removed in later versions.

2.1.1. Server/Client Relationship

The NFS protocol is designed to allow servers to be as simple and genera as possible. Sometimes the
simplicity of the server can be a problem, if the client wants to implement complicated filesystem seman-
tics.

For example, UNIX allows removal of open files. A process can open afile and, while it is open, remove
it from the directory. The file can be read and written as long as the process keeps it open, even though
the file has no name in the filesystem. It isimpossible for a stateless server to implement these semantics.
The client can do some tricks like renaming the file on remove, and only removing it on close. We
believe that the server provides enough functionality to implement most filesystem semantics on the
client.

Sun Microsystems Release 2.0

Page 4 NFS Protocol Spec

Every NFS client can also be a server, and remote and local mounted filesystems can be freely inter-
mixed. This leads to some interesting problems when a client travels down the directory tree of a remote
filesystem and reaches the mount point on the server for another remote filesystem. Allowing the server
to following the second remote mount means it must do loop detection, server lookup, and user revalida
tion. Instead, we decided not to let clients cross a server’s mount point. When a client does a LOOKUP
on adirectory that the server has mounted a filesystem on, the client sees the underlying directory instead
of the mounted directory. A client can do remote mounts that match the server’s mount points to main-
tain the server’sview.

2.1.2. Permission |Issues

The NFS protocol, strictly speaking, does not define the permission checking used by servers. However,
it is expected that a server will do normal UNIX permission checking using AUTH_UNI X style authenti-
cation as the basis of its protection mechanism. The server gets the client’s effective uid, effective gid
and groups on each call, and uses them to check permission. There are various problems with this
method that can been resolved in interesting ways.

Using uid and gid implies that the client and server share the same uid list. Every server and client pair
must have the same mapping from user to uid and from group to gid. Since every client can aso be a
server this tends to imply that the whole network shares the same uid/gid space. Thisis acceptable for the
short term, but a more workable network authentication method will be necessary before long.

Another problem arises due to the semantics of open. UNIX does its permission checking at open time
and then that the file is open, and has been checked on later read and write requests. With stateless
servers this breaks down, because the server has no idea that the file is open and it must do permission
checking on each read and write call. Onalocal filesystem, a user can open afile then change the permis-
sions so that no one is allowed to touch it, but will still be able to write to the file because it is open. On a
remote filesystem, by contrast, the write would fail. To get around this problem the server’s permission
checking algorithm should allow the owner of afile to access it no matter what the permissions are set to.

A similar problem has to do with paging in from a file over the network. The UNIX kernel checks for
execute permission before opening afile for demand paging, then reads blocks from the open file. Thefile
may not have read permission but after it is opened it doesn’t matter. An NFS server can't tell the differ-
ence between a normal file read and a demand page-in read. To make this work the server allows reading
of filesif theuid givenin the call has execute or read permission on thefile.

In UNIX , the user ID zero has accessto al files no matter what permission and ownership they have. This
super-user permission is not allowed on the server since anyone who can become super-user on their
workstation could gain access to all remote files. Instead, the server maps uid 0 to -2 before doing its
access checking. This works as long as the NFS is not used to supply root filesystems, where super-user
access cannot be avoided. Eventually serverswill have to alow some kind of limited super-user access.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 5

2.1.3. RPC Information

Authentication
The NFS service uses AUTH _UNI X style authentication except in the NULL procedure where
AUTH_NONE is also allowed.

Protocols
NFS currently is supported on UDP/IP only.

Constants
These are the RPC constants needed to call the NFS service. They are given in decimal.

PROGRAM 100003
VERSION 2

Port Number
The NFS protocol currently uses the UDP port number 2049. This is a bug in the protocol and will
be changed very shortly.

2.1.4. Sizes
These are the sizes, given in decimal bytes, of various XDR structures used in the protocol.

MAXDATA 8192
The maximum number of bytes of datain a READ or WRI TE request.

MAXPATHLEN 1024
The maximum number of bytes in a pathname argument.

MAXNAMLEN 255
The maximum number of bytesin afile name argument.

COOKIESIZE 4
The size in bytes of the opague *‘ cookie’’ passed by READDI R.

FHSIZE 32
The size in bytes of the opaque file handle.

Sun Microsystems Release 2.0

Page 6 NFS Protocol Spec

2.1.5. Basic Data Types

The following XDR definitions are basic structures and types used in other structures later on.

2151, stat

t ypedef enum {
NFS OK = 0,
NFSERR_PERMVEF1,
NFSERR_NOENT=2,
NFSERR | O=5,
NFSERR_NXI O=6,
NFSERR_ACCES=13,
NFSERR_EXI ST=17,
NFSERR_NODEV=19,
NFSERR_NOTDI R=20,
NFSERR | SDI R=21,
NFSERR _FBI G=27,
NFSERR_NOSPC=28,
NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69,
NFSERR_STALE=70,
NFSERR_WFLUSH=99

} stat;

The st at type is returned with every procedure’s results. A value of NFS_(K indicates that the call
completed successfully and the results are valid. The other values indicate some kind of error occurred
on the server side during the servicing of the procedure. The error values are derived from UNIX error
numbers.

NFSERR_PERM
Not owner. The caller does not have correct ownership to perform the requested operation.

NFSERR_NOENT
No such file or directory. Thefile or directory specified does not exist.

NFSERR_IO
I/O error. Some sort of hard error occurred when the operation was in progress. This could be a disk
error, for example.

NFSERR_NXIO
No such device or address.

NFSERR_ACCES
Permission denied. The caller does not have the correct permission to perform the requested opera
tion.

NFSERR_EXIST
File exists. Thefile specified aready exists.

NFSERR_NODEV
No such device.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 7

NFSERR_NOTDIR
Not adirectory. The caller specified anon-directory in adirectory operation.

NFSERR_ISDIR
Isadirectory. The caller specified adirectory in anon-directory operation.

NFSERR_FBIG
Filetoo large. The operation caused afile to grow beyond the server’ slimit.

NFSERR_NOSPC
No space left on device. The operation caused the server’ sfilesystem to reach its limit.

NFSERR_ROFS
Read-only filesystem. Write attempted on a read-only filesystem.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty. Attempted to remove a directory that was not empty.

NFSERR_DQUOT
Disk quota exceeded. The client’s disk quota on the server has been exceeded.

NFSERR_STALE
Thef handl e given in the arguments was invalid. That is, the file referred to by that file handle no
longer exists, or accessto it has been revoked.

NFSERR_WFLUSH
The server’ swrite cache used in the WRI TECACHE call got flushed to disk.

2.1.5.2. ftype

t ypedef enum {
NFNON
NFREG
NFDI R
NFBLK
NFCHR
NFLNK

} ftype;

I T e O VA 1|
arowdNdEFEO

The enumeration f t ype gives the type of afile. The type NFNON indicates a non-file, NFREG is a regu-
lar file, NFDI Ris adirectory, NFBLK is a block-special device, NFCHR is a character-specia device, and
NFLNK isasymboalic link.

2.1.5.3. fhandle
t ypedef opaque fhandl e[FHSI ZE];

Thef handl e isthefile handle that the server passesto the client. All file operations are done using file

handles to refer to afile or directory. The file handle can contain whatever information the server needs
to distinguish an individua file.

Sun Microsystems Release 2.0

Page 8 NFS Protocol Spec

2.1.5.4. timeval

t ypedef struct {
unsi gned seconds;
unsi gned useconds;
} tineval

The ti meval structure is the number of seconds and microseconds since midnight January 1, 1970
Greenwich Mean Time. It isused to passtime and date information.

2.1.5.5. fattr

typedef struct {
ftype type;
unsi gned node;
unsi gned nli nk;
unsi gned ui d;
unsi gned gi d;
unsi gned si ze
unsi gned bl ocksi ze;
unsi gned rdev;
unsi gned bl ocks;
unsi gned fsid;
unsi gned fil eid;
timeval atine;
timeval ntine;
timeval ctinme;

} fattr;

Thef at t r structure contains the attributes of afile; t ype isthe type of the file; nl i nk is the number
of hard links to the file, that is, the number of different names for the same file; ui d is the user
identification number of the owner of thefile; gi d is the group identification number of the group of the
file; si ze isthe size in bytes of the file; bl ocksi ze isthe size in bytes of ablock of the file; r dev is
the device number of the fileif it istype NFCHR or NFBLK; bl ocks isthe number of blocks that the file
takes up on disk; f si d is the file system identifier for the filesystem that contains thefile; fi | ei d isa
number that uniquely identifies the file within its filesystem; at i e is the time when the file was last
accessed for either read or write; nt i me is the time when the file data was last modified (written); and
ct i me isthetime when the status of the file was last changed. Writing to the file also changesct i ne if
the size of the file changes.

Mode is the access mode encoded as a set of bits. The bits are the same as the mode bits returned by the
stat (2) system call in UNIX . Notice that the file type is specified both in the mode bits and in the file
type. Thisis really a bug in the protocol and should be fixed in future versions. The descriptions given
below specify the bit positions using octal numbers.

0040000 Thisisadirectory. Thet ype field should be NFDI R.

0020000 Thisisacharacter special file. Thet ype field should be NFCHR.
0060000 Thisisablock special file. Thet ype field should be NFBLK.
0100000 Thisisaregular file. Thet ype field should be NFREG.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 9

0120000 Thisisasymboliclink file. Thet ype field should be NFLNK.
0140000 Thisisanamed socket. Thet ype field should be NFNON.
0004000 Set user id on execution.

0002000 Set group id on execution.

0001000 Save swapped text even after use.

0000400 Read permission for owner.

0000200 Write permission for owner.

0000100 Execute and search permission for owner.

0000040 Read permission for group.

0000020 Write permission for group.

0000010 Execute and search permission for group.

0000004 Read permission for others.

0000002 Write permission for others.

0000001 Execute and search permission for others.

2.15.6. sattr

t ypedef struct {
unsi gned node;
unsi gned ui d;
unsi gned gi d;
unsi gned si ze;
ti meval ati ne;
ti meval ntime;

} sattr;

Thesat t r structure contains the file attributes which can be set from the client. The fields are the same
asforfattr above. A si ze of zero means the file should be truncated. A value of -1 indicates afield
that should be ignored.

2.15.7. filename
typedef string fil ename<MAXNAMLEN>;

Thetypefi | enane isused for passing file names or pathname components.

2.1.5.8. path
typedef string pat h<MAXPATHLEN>;

The type pat h is a pathname. The server considers it as a string with no internal structure, but to the
client it isthe name of anodein afilesystem tree.

Sun Microsystems Release 2.0

Page 10 NFS Protocol Spec

2.1.5.9. attrstat

typedef union switch (stat status) {

NFS_CK
fattr attri butes;
defaul t:
struct {}
} attrstat;

The at tr st at structure is a common procedure result. It contains a st at us and, if the call suc-
ceeded, it also contains the attributes of the file on which the operation was done.

2.1.5.10. diropargs
typedef struct {

f handl e dir;
fil ename name;
} diropargs;

Thedi r opar gs structureis used in directory operations. Thef handl e di r isthe directory in which
to find thefile nanme. A directory operation isone in which the directory is affected.

2.15.11. diropres

typedef union switch (stat status) {

NFS K
struct ({
fhandle file;
fattr attri butes;
defaul t:
struct {}

} diropres;

The results of a directory operation are returned in adi r opr es structure. If the call succeeded a new
filehandlefi | e andtheat t ri but es associated with that file are returned along with the st at us.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 11

2.1.6. Server Procedures

The following sections define the RPC procedures supplied by a NFS server. The RPC procedure number
and version are given in the header, along with the name of the prodedure. The synopsis of prodecures
has this format:

<proc #>. <proc name> (<arguments>) returns (<results>)
<argunment decl arations>
<resul ts decl arations>

In the first line, proc name is the name of the procedure, arguments is a list of the names of the argu-
ments, and results isalist of the names of the results. The second and third lines give the XDR argument
declarations and results declarations. Afterwards, there is a description of what the procedure is
expected to do, and how its arguments and results are used. If there are bugs or problems with the pro-
cedure, they are listed at the end.

All of the procedures in the NFS protocol are assumed to be synchronous. When a procedure returns to
the client, the client can assume that the operation has completed and any data associated with the request
is now on stable storage. For example, a client WRITE request may cause the server to update data
blocks, filesystem information blocks (such as indirect blocks in UNIX), and file attribute information
(size and modify times). When the WRITE returns to the client, it can assume that the write is safe, even
in case of a server crash, and it can discard the data written. Thisis avery important part of the stateless-
ness of the server. If the server waited to flush data from remote requests the client would have to save
those requests so that it could resend them in case of a server crash.

2.1.6.1. Do Nothing (Procedure0, Version 2)
0. NFSPROC_NULL () returns ()

This procedure does no work. It is made available in all RPC services to allow server response testing
and timing.

2.1.6.2. Get File Attributes (Procedurel, Version 2)

1. NFSPROC GETATTR (file) returns (reply)
fhandle file;
attrstat reply;

Ifreply.status isNFS_OKthenreply. attri butes contains the attributes for the file given by
file.

Bugs: the r dev field in the attributes structure is a UNIX device specifier. It should be removed or gen-
eralized.

Sun Microsystems Release 2.0

Page 12 NFS Protocol Spec

2.1.6.3. Set File Attributes (Procedure 2, Version 2)

2. NFSPROC SETATTR (file, attributes) returns (reply)
fhandle file;
sattr attributes;
attrstat reply;

Theat t ri but es argument contains fields which are either -1 or are the new value for the attributes of
file. Ifreply.status isNFS_COKthenreply. attri butes has the attributes of the file after
theset at t r operation has completed.

Bugs: the use of -1 to indicate an unused fieldinat t ri but es iswrong.

2.1.6.4. Get Filesystem Root (Procedure 3, Version 2)
3. NFSPROC ROOT () returns ()

Obsolete. This procedure is no longer used because finding the root file handle of a filesystem
requires moving pathnames between client and server. To do thisright we would have to define a
network standard representation of pathnames. Instead, the function of looking up the root file
handle is done by the MNTPROC_IMNT procedur e (see section entitled Mount Protocol Definition for
details).

2.1.6.5. Look Up File Name (Procedure 4, Version 2)

4. NFSPROC LOOKUP (which) returns (reply)
di ropargs whi ch;
diropres reply;

Ifreply.status isNFS_OKthenreply.fileandreply. attributes arethe file handle and
attributes for the file whi ch. nane in the directory given by whi ch. di r.

Bugs: there is some question as to what is the correct reply to a LOOKUP request when whi ch. namne is
a mount point on the server for a remote mounted filesystem. Currently, we return the f handl e of the
underlying directory. Thisis not completely acceptable, as the clients see a different view of the filesys-
tem than the server does.

2.1.6.6. Read From Symbolic Link (Procedure5, Version 2)
5. NFSPROC_READLI NK (file) returns (reply)

fhandle file;
union switch (stat status) {
NFS_CK
pat h dat a
defaul t:
struct {}
} reply;

If st at us hasthevalue NFS OK thenr epl y. dat a isthe datain the symbolic link givenby fi | e.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 13

2.1.6.7. Read From File (Procedure6, Version 2)

6. NFSPROC READ (file, offset, count, totalcount) returns (reply)
fhandle file;
unsi gned of fset;
unsi gned count;
unsi gned total count;
union switch (stat status) {
NFS_CK
fattr attributes;
string dat a<MAXDATA>
defaul t:
struct {}

} reply;

Returns up to count bytes of dat a from the file given by fi | e, starting at of f set bytes from the
beginning of the file. The first byte of the file is at offset zero. The file attributes after the read takes
placearereturnedinattri but es.

Bugs: the argument t ot al count isunused, and should be removed.

2.1.6.8. Writeto Cache (Procedure?7, Version 2)
7. NFSPROC WRI TECACHE () returns ()

Obsolete.

2.1.6.9. Writeto File (Procedure 8, Version 2)

8. NFSPRCC WRI TE (fil e, begi nof fset, offset,total count,data) returns (reply)
fhandle file;
unsi gned begi nof f set;
unsi gned of fset;
unsi gned total count;
string dat a<MAXDATA>
attrstat reply;

Writes dat a beginning of f set bytes from the beginning of fi | e. Thefirst byte of thefileis at offset
zero. Ifreply. status isNFS_OKthenrepl y. attri but es contains the attributes of the file after
the write has completed. The write operation is atomic. Data from this WRI TE will not be mixed with
data from another client’ sWRI TE.

Bugs: the arguments begi nof f set andt ot al count areignored and should be removed.

Sun Microsystems Release 2.0

Page 14 NFS Protocol Spec

2.1.6.10. CreateFile (Procedure 9, Version 2)

9. NFSPROC _CREATE (where, attributes) returns (dir)
di ropargs where;
sattr attributes;
diropres dir;

The file wher e. nane is created in the directory given by wher e. di r. The initia attributes of the
new filearegivenby attri but es. Areply. status of NFS_OK indicates that the file was created
and reply.file and reply.attributes are its file handle and attributes. Any other
repl y. st at us meansthat the operation failed and no file was created.

Bugs: this routine should pass an exclusive create flag meaning, create the file only if it is not aready
there.

2.1.6.11. Remove File (Procedure 10, Version 2)

10. NFSPROC_REMOTE (which) returns (status)
di ropargs whi ch;
st at st at us;

The file whi ch. name is removed from the directory given by whi ch. dir. A status of NFS_OK
means the directory entry was removed.

2.1.6.12. RenameFile (Procedure 11, Version 2)

11. NFSPROC RENAME (from to) returns (status)
di ropargs from
di ropargs to;
st at st at us;

The existing file f rom nane in the directory given by from di r is renamed to t 0. nane in the
directory given by t 0. di r. If st at us is NFS_CX the file was renamed. The RENANME operation is
atomic on the server; it cannot be interrupted in the middle.

2.1.6.13. CreateLink to File (Procedure 12, Version 2)

12. NFSPROC LINK (from to) returns (status)
f handl e from
di ropargs to;
st at st at us;

Creates the file t 0. nan®e in the directory given by t 0. di r, which is a hard link to the existing file
given by f rom If the return value of st at us is NFS_OK a link was created. Any other return value
indicates an error and the link is not created.

A hard link should have the property that changes to either of the linked files are reflected in both files.
When a hard link is made to afile, the attributes for the file should have avalue for nl i nk which is one
greater than the value before the link.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 15

2.1.6.14. Create Symbolic Link (Procedure 13, Version 2)

13. NFSPROC SYMLINK (from to, attributes) returns (status)
di ropargs from

pat h t o;
sattr attri butes;
st at st at us;

Createsthefilef r om name with ftype NFLNK in the directory given by f r om di r. The new file con-
tains the pathname t o and has initial attributes given by at t ri but es. If the return value of st at us
isNFS_OK alink was created. Any other return value indicates an error and the link is not created.

A symbolic link is a pointer to another file. The name givenint o is not interpreted by the server, just
stored in the newly created file. A READLI NK operation returns the data to the client for interpretation.

Bugs: on UNIX serversthe attributes are never used, since symbolic links always have mode 0777.

2.1.6.15. Create Directory (Procedure 14, Version 2)
14. NFSPROC MKDI R (where, attributes) returns (reply)
di r opargs where;
sattr attributes;
diropres reply;

The new directory wher e. nane is created in the directory given by wher e. di r. Theinitial attributes
of the new directory aregivenby att ri but es. Areply. st at us of NFS_OK indicates that the new
directory was created and repl y. fil e andreply. attri but es are its file handle and attributes.
Any other r epl y. st at us means that the operation failed and no directory was created.

2.1.6.16. Remove Directory (Procedure 15, Version 2)

15. NFSPROC _RMDI R (whi ch) returns (status)
di r opar gs whi ch;
st at st at us;

The existing, empty directory whi ch. name in the directory given by whi ch. di r is removed. If
st at us isNFS_ (K the directory was removed.

Sun Microsystems Release 2.0

Page 16 NFS Protocol Spec

2.1.6.17. Read From Directory (Procedure 16, Version 2)

16. NFSPROC READDIR (dir, cookie, count) returns (entries)
fhandle dir;
opaque cooki e[COXI ESI ZE] ;
unsi gned count;
union switch (stat status) {

NFS_CK
typedef union sw tch (bool ean valid) {
TRUE:
struct {
unsi gned fileid;
fil enane name;
opaque cooki e[COXI ESI ZE] ;
entry nextentry;
}
FALSE:
struct {}
} entry;
bool ean eof;
def aul t:
} entries;

Returns a variable number of directory entries, with atotal size of up to count bytes, from the directory
givenby di r. Eachentry containsafi | ei d which is a unique number to identify the file within a
filesystem, the namne of the file, and acooki e which is an opague pointer to the next entry in the direc-
tory. The cookie is used in the next READDIR call to get more entries starting at a given point in the
directory. The special cookie zero (al bits zero) can be used to get the entries starting at the beginning of
the directory. Thefi | ei d field should be the same number asthefi | ei d in the the attributes of the
file (see the section entitled fattr under Basic Data Types). The eof flag has a value of TRUE if there
are no more entries in the directory; val i d is used to mark the end of the entries. If the returned value
of st at us isNFS_CK then it isfollowed by avariable number of ent ri es.

2.1.6.18. Get Filesystem Attributes (Procedure 17, Version 2)

17. NFSPROC _STATFS (file) returns (reply)
fhandle file;
uni on switch (stat status) {

NFS_OK
struct ({
unsi gned tsize;
unsi gned bsi ze;
unsi gned bl ocks;
unsi gned bf r ee;
unsi gned bavai |
} fsattr;
defaul t:
struct {}
} reply;

Sun Microsystems Release 2.0

NFS Protocol Spec Page 17

If reply.status isNFS_OK then reply. fsattr gives the attributes for the filesystem that con-
tainsfi | e. The attribute fields contain the following values:

tsize The optimum transfer size of the server in bytes. This is the number of bytes the server would
like to have in the data part of READ and VRl TE requests.

bsize The block size in bytes of the filesystem.

blocks Thetotal number of bsi ze blocks on the filesystem.

bfree The number of freebsi ze blocks on the filesystem.

bavail The number of bsi ze blocks available to non-privileged users.

Bugs: this call does not work well if afilesystem has variable size blocks.

Sun Microsystems Release 2.0

Page 18 NFS Protocol Spec

3. Mount Protocol Definition

The mount protocol is separate from, but related to, the NFS protocol. It provides al of the operating
system specific services to get the NFS off the ground — looking up path names, validating user identity,
and checking access permissions. Clients use the mount protocol to get the first file handle, which allows
them entry into aremote filesystem.

The mount protocol is kept separate from the NFS protocol to make it easy to plug in new access check-
ing and validation methods without changing the NFS server protocol.

Notice that the protocol definition implies stateful servers because the server maintains a list of client’s
mount requests. The mount list information is not critical for the correct functioning of either the client
or the server. It isintented for advisory use only, for example, to warn possible clients when a server is
going down.

3.1. Vasonl

Version one of the mount protocol communicates with the version two of the NFS protocol. The only
connecting point isthe f handl e structure, which is the same for both protocols.

3.1.1. RPC Information

Authentication
The mount service uses AUTH_UNI X style authentication only.

Protocols
The mount serviceis currently supported on UDP/IP only.

Constants
These are the RPC constants needed to call the MOUNT service. They aregiven in decimal.

PROGRAM 100005
VERSION 1

Port Number
Consult the server’s portmapper, described in the RPC Protocol Specification, to find which port
number the mount service is registered on.

3.1.2. Sizes
These are the sizes given in decimal bytes of various XDR structures used in the protocol.

MNTPATHLEN 1024
The maximum number of bytesin a pathname argument.

MNTNAMLEN 255
The maximum number of bytes in a name argument.

FHSIZE 32
The size in bytes of the opague file handle.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 19

3.1.3. Basic Data Types

3.1.3.1. fhandle
t ypedef opaque fhandl e[FHSI ZE] ;

Thef handl e isthefile handle that the server passesto the client. All file operations are done using file
handles to refer to afile or directory. The file handle can contain whatever information the server needs
to distinguish an individual file.

This is the same as the f handl e XDR definition in version 2 of the NFS protocol; see the section on
f handl e under Basic Data Types.

3.1.3.2. fhstatus

typedef union switch (unsigned status) {
0:
fhandl e directory;
defaul t:
struct {}

}

If ast at us of zero is returned, the call completed successfully, and a file handle for the di r ect ory
follows. A non-zero status indicates some sort of error. Inthis case the statusisaUNIX error number.

3.1.3.3. dirpath
typedef string dirpat h<MNTPATHLEN>;

Thetypedi r pat h isanormal UNIX pathname of a directory.

3.1.3.4. name
typedef string name<MNTNAMLEN>;

Thetype name isan arbitrary string used for various names.

Sun Microsystems Release 2.0

Page 20 NFS Protocol Spec

3.1.4. Server Procedures

The following sections define the RPC procedures supplied by a mount server. The RPC procedure
number and version are given in the header, along with the name of the procedure. The synopsis of pro-
cedures has this format:

<proc #>. <proc name> (<arguments>) returns (<results>)

<argunment decl arations>
<resul ts decl arations>

In the first line, proc name is the name of the procedure, arguments is a list of the names of the argu-
ments, and results isalist of the names of the results. The second and third lines give the XDR argument
declarations and results declarations. Afterwards, there is a description of what the procedure is
expected to do, and how its arguments and results are used. If there are bugs or problems with the pro-
cedure, they are listed at the end.

3.1.4.1. Do Nothing (Procedure0, Version 1)
0. MNTPROC NULL () returns ()

This procedure does no work. It is made available in all RPC services to allow server response testing
and timing.

3.1.4.2. Add Mount Entry (Procedure 1, Version 1)

1. MNTPROC MNT (directory) returns (reply)
di rpath dirnane;
fhstatus reply;

If reply.status isO, reply. directory contains the file handle for the directory di r name.
Thisfile handle may be used in the NFS protocol. This procedure also adds a new entry to the mount list
for this client mounting di r nane.

3.1.4.3. Return Mount Entries (Procedure2, Version 1)

2. MNTPROC DUMP () returns (nmountlist)
uni on switch (boolean nore_entries) {

TRUE:
struct {
name host nane;
dirpath directory;
nountli st nextentry;
}
FALSE:
struct {}

} nmountlist;

Returns the list of remote mounted filesystems. The mount | i st contains one entry for each host -
name anddi r ect ory pair.

Sun Microsystems Release 2.0

NFS Protocol Spec Page 21

3.1.4.4. Remove Mount Entry (Procedure 3, Version 1)

3. MNTPROC UWNT (directory) returns ()
dirpath directory;

Removes the mount list entry for di r ect ory.

3.1.4.5. Remove All Mount Entries (Procedure 4, Version 1)
4. MNTPROC UWNTALL () returns ()

Removes all of the mount list entries for this client.

3.1.4.6. Return Export List (Procedure5, Version 1)

5. MNTPROC EXPORT () returns (exportlist)
union switch (boolean nore_entries) {

TRUE:
struct {
di rpath filesys;
t ypedef union switch (bool ean nore_groups) {
TRUE:
struct {
name gr name;
groups nextgroup;
}
FALSE:
struct {}
} groups;
mount | i st nextentry;
}
FALSE:
struct {}

} exportlist;

Returnsin export|i st avariable number of export list entries. Each entry contains a filesystem name
and a list of groups that are alowed to import it. The filesystem nameisin exportlist.fil esys,
and the group nameisinexport!i st. groups. gr nane.

Bugs: the exportlist should contain more information about the status of the filesystem, such as a read-
only flag.

Sun Microsystems Release 2.0

