Remote Procedure Call
Protocol Specification

Sun Microsystems Release 2.0

Remote Procedure Call
Protocol Specification

1. Introduction

This document specifies a message protocol used in implementing Sun’s Remote Procedure Call (RPC)
package. The message protocol is specified with the eXternal Data Representation (XDR) language.

This document assumes that the reader is familiar with both RPC and XDR. It does not attempt to justify
RPC or its uses. Also, the casual user of RPC does not need to be familiar with the information in this
document.

1.1. Terminology

The document discusses servers, services, programs, procedures, clients and versions. A server is a
machine where some number of network services are implemented. A service is a collection of one or
more remote programs. A remote program implements one or more remote procedures; the procedures,
their parameters and results are documented in the specific program’s protocol specification (see Appen-
dix C for an example). Network clients are pieces of software that initiate remote procedure calls to ser-
vices. A server may support more than one version of a remote program in order to be forward compati-
ble with changing protocols.

For example, a network file service may be composed of two programs. One program may deal with high
level applications such as file system access control and locking. The other may deal with low-level file
1/0, and have procedures like ‘‘read’’ and ‘‘write’’. A client machine of the network file service would
call the procedures associated with the two programs of the service on behalf of some user on the client
machine.

1.2. TheRPC Model

The remote procedure call model is similar to the local procedure call model. Inthe local case, the caller
places arguments to a procedure in some well-specified location (such as a result register). It then
transfers control to the procedure, and eventually gains back control. At that point, the results of the pro-
cedure are extracted from the well-specified location, and the caller continues execution.

The remote procedure call is similar, except that one thread of control winds through two processes —
one is the caller's process, the other is a server’ s process. That is, the caller process sends a call message
to the server process and waits (blocks) for a reply message. The call message contains the procedure’s
parameters, among other things. The reply message contains the procedure’ s results, among other things.
Once the reply message is received, the results of the procedure are extracted, and caller’s execution is
resumed.

Sun Microsystems Release 2.0

Page 2 RPC Protocol Spec

On the server side, a process is dormant awaiting the arrival of a call message. When one arrives the
server process extracts the procedure’ s parameters, computes the results, sends a reply message, and then
awaits the next call message. Note that in this model, only one of the two processesis active at any given
time. That is, the RPC protocol does not explicitly support multi-threading of caller or server processes.

1.3. Transportsand Semantics

The RPC protocoal is independent of transport protocols. That is, RPC does not care how a message is
passed from one process to another. The protocol only deals with the specification and interpretation of
messages.

Because of transport independence, the RPC protocol does not attach specific semantics to the remote
procedures or their execution. Some semantics can be inferred from (but should be explicitly specified
by) the underlying transport protocol. For example, RPC message passing using UDP/IP is unreliable.
Thus, if the caller retransmits call messages after short time-outs, the only thing he can infer from no
reply message is that the remote procedure was executed zero or more times (and from a reply message,
one or more times). On the other hand, RPC message passing using TCP/IP is reliable. No reply mes-
sage means that the remote procedure was executed at most once, whereas a reply message means that the
remote procedure was exactly once. (Note: At Sun, RPC is currently implemented on top of TCP/IP and
UDP/IP transports.)

1.4. Binding and Rendezvous Independence

The act of binding a client to a service is NOT part of the remote procedure call specification. This
important and necessary function is left up to some higher level software. (The software may use RPC
itself; see Appendix C.)

Implementors should think of the RPC protocol as the jump-subroutine instruction (**JSR’’) of a network;
the loader (binder) makes JSR useful, and the loader itself uses JSR to accomplish its task. Likewise, the
network makes RPC useful, using RPC to accomplish this task.

1.5. Message Authentication

The RPC protocol provides the fields necessary for aclient to identify himself to a service and vice versa.
Security and access control mechanisms can be built on top of the message authentication.

Sun Microsystems Release 2.0

RPC Protocol Spec Page 3

2. Requirements
The RPC protocol must provide for the following:

1. Unique specification of a procedure to be called.
2. Provisions for matching response messages to request messages.
3. Provisionsfor authenticating the caller to service and vice versa.

Besides these requirements, features that detect the following are worth supporting because of protocol
roll-over errors, implementation bugs, user error, and network administration:

RPC protocol mismatches.

Remote program protocol version mismatches.

Protocol errors (like mis-specification of a procedure' s parameters).
Reasons why remote authentication failed.

Any other reasons why the desired procedure was not called.

agkrowdE

2.1. Remote Programsand Procedures

The RPC call message has three unsigned fields: remote program number, remote program version
number, and remote procedure number. The three fields uniquely identify the procedure to be called.
Program numbers are administered by some central authority (like Sun). Once an implementor has a pro-
gram number, he can implement his remote program; the first implementation would most likely have the
version number of 1. Because most new protocols evolve into better, stable and mature protocols, a ver-
sion field of the call message identifies which version of the protocol the caller isusing. Version numbers
make speaking old and new protocols through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are documented in the
specific program’s protocol specification. For example, a file service's protocol specification may state
that its procedure number 5isr ead and procedure number 12iswrit e.

Just as remote program protocols may change over severa versions, the actual RPC message protocol
could also change. Therefore, the call message also has the RPC version number in it; this field must be
two (2).

The reply message to a request message has enough information to distinguish the following error condi-
tions:

1) Theremoteimplementation of RPC does speak protocol version 2. The lowest and highest supported
RPC version numbers are returned.

2) Theremote program is not available on the remote system.

3) The remote program does not support the requested version number. The lowest and highest sup-
ported remote program version numbers are returned.

4) The requested procedure number does not exist (thisis usually a caller side protocol or programming
error).

5) The parameters to the remote procedure appear to be garbage from the server's point of view.
(Again, thisis caused by a disagreement about the protocol between client and service.)

Sun Microsystems Release 2.0

Page 4 RPC Protocol Spec

2.2. Authentication

Provisions for authentication of caller to service and vice versa are provided as a wart on the side of the
RPC protocol. The call message has two authentication fields, the credentials and verifier. The reply
message has one authentication field, the response verifier. The RPC protocol specification defines all
three fields to be the following opaque type:

enum aut h_flavor {
AUTH_NULL
AUTH_UNI X
AUTH_SHORT
/* and nore to be

0
1
2
defined */

}s

struct opaque_auth {
union switch (enumauth_flavor) {
default: string auth_body<400>;

}s
}s

In smple English, any opaque_aut h structure is an aut h_f | avor enumeration followed by a
counted string, whose bytes are opague to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is specified by indi-
vidual, independent authentication protocol specifications. Appendix A defines three authentication pro-
tocols.

If authentication parameters were rejected, the response message contains information stating why they
were rejected.

2.3. Program Number Assignment

Program numbers are given out in groups of 0x20000000 (536870912) according to the following chart:

0 - 1fffffff defined by Sun
20000000 - 3fffffff defined by user
40000000 - 5fffffff | trandent
60000000 - 7fffffff reserved
80000000 - Offfffff reserved
a0000000 - bfffffff reserved
c0000000 - dfffffff reserved
e0000000 - ffffffff reserved

The first group is a range of numbers administered by Sun Microsystems, and should be identical for al
Sun customers. The second range is for applications peculiar to a particular customer. This range is
intended primarily for debugging new programs. When a customer develops an application that might be
of general interest, that application should be given an assigned number in the first range. The third group
is for applications that generate program numbers dynamically. The final groups are reservered for future
use, and should not be used. The exact registration process for Sun defined numbers is yet to be esta-
blished.

Sun Microsystems Release 2.0

RPC Protocol Spec Page 5

3. Other Usesand Abuses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is, each call message is matched
with a response message. However, the protocol itself is a message passing protocol with which other
(non-RPC) protocols can be implemented. Sun currently uses (abuses) the RPC message protocol for the
following two (non-RPC) protocols: batching (or pipelining) and broadcast RPC. These two protocols
are discussed (but not defined) below.

3.1. Batching

Batching allows a client to send an arbitrarily large sequence of call messages to a server; batching uses
reliable bytes stream protocols (like TCP/IP) for their transport. In the case of batching, the client never
waits for a reply from the server and the server does not send replies to batch requests. A segquence of
batch calls is usually terminated by a legitimate RPC in order to flush the pipeline (with positive ack-
nowledgement).

3.2. Broadcast RPC

In broadcast RPC based protocols, the client sends an a broadcast packet to the network and waits for
numerous replies. Broadcast RPC uses unreliable, packet based protocols (like UDP/IP) as their tran-
sports. Servers that support broadcast protocols only respond when the request is successfully processed,
and are silent in the face of errors.

4. The RPC M essage Protocol

This section defines the RPC message protocol in the XDR data description language. The message is
defined in atop down style. Note: Thisis an XDR specification, not C code.

enum nsg_type {
CALL = 0,
REPLY = 1

i

/*

* Areply to a call nessage can take on two forns:

* the nessage was either accepted or rejected.

*/

enumreply stat {
M5G_ACCEPTED
MSG _DENIED = 1

Oy

}s

Sun Microsystems Release 2.0

Page 6 RPC Protocol Spec

/*
* Gven that a call message was accepted, the following is the status of
* an attenpt to call a renote procedure.

*/

enum accept _stat {
SUCCESS = 0, /* renote procedure was successfully executed */
PROG UNAVAIL = 1, /* renmpte machi ne exports the program number */
PROG M SMATCH = 2, /* renmpte machi ne can’t support version numnber */
PROC UNAVAIL = 3, /* rempte program doesn’t know about procedure */
GARBAGE_ARGS = 4 /* renote procedure can't figure out parameters */

i

/*

* Reasons why a call nmessage was rejected:

*/

enumreject_stat {
RPC M SMATCH = 0, /* RPC version nunber was not two (2) */

AUTH ERROR = 1 /* caller not authenticated on renote machi ne */
i
/*
* Way aut hentication fail ed:
*/
enum aut h_stat {
AUTH_BADCRED = 1, /* bogus credentials (seal broken) */
AUTH REJECTEDCRED = 2, [/* client should begin new session */
AUTH_BADVERF = 3, /* bogus verifier (seal broken) */
AUTH REJECTEDVERF = 4, /* verifier expired or was replayed */
AUTH_TOOWEAK = 5, /* rejected due to security reasons */
i
/*
* The RPC nessage:
* All nessages start with a transaction identifier, xid, followed by
* a two-armed discrimnated union. The union’s discrimnant is a nsg_type
* which switches to one of the two types of the nessage. The xid of a
* REPLY message al ways matches that of the initiating CALL nessage.
* NB: The xid field is only used for clients matching reply nmessages with
* call messages; the service side cannot treat this id as any type of
* sequence number.
*/
struct rpc_nsg {
unsi gned Xi d;
uni on switch (enum nmsg_type) {
CALL: struct call _body;
REPLY: struct reply_body;
i
i

Sun Microsystems Release 2.0

RPC Protocol Spec Page 7

/*
* Body of an RPC request call
* In version 2 of the RPC protocol specification, rpcvers nust be equal to 2.
* The fields prog, vers, and proc specify the renpte program its version
* and the procedure within the remote programto be called. These fields are
* followed by two authentication paraneters, cred (authentication credentials)
* and verf (authentication verifier). The authentication parameters are
* followed * by the paraneters to the renpte procedure; these paraneters are
* specified by the specific program protocol
*/
struct call _body {
unsi gned rpcvers; /* must be equal to two (2) */
unsi gned prog;
unsi gned vers;
unsi gned proc;
struct opaque_auth cred;
struct opaque_auth verf;
/* procedure specific paraneters start here */
b
/*

* Body of a reply to an RPC request.
* The call nessage was either accepted or rejected.
*/
struct reply_body {
union switch (enumreply_stat) {
MSG_ACCEPTED: struct accepted_reply;
MSG_DENI ED: struct rejected_reply;

b

Sun Microsystems Release 2.0

Page 8 RPC Protocol Spec

Reply to an RPC request that was accepted by the server.
Note: there could be an error even though the request was accepted.
The first field is an authentication verifier which the server generates
in order to validate itself to the caller. It is followed by a union
whose discrimnant is an enum accept_stat. The SUCCESS arm of the union is
protocol specific. The PROG UNAVAIL, PROC UNAVAIL, and GARBAGE_ARGS arns
of the union are void. The PROG M SMATCH arm specifies the | owest and
hi ghest version nunbers of the renmpte programthat are supported by the
server.
/
struct accepted_reply {
struct opaque_auth verf;
uni on switch (enum accept_stat) {
SUCCESS: struct {

/*

* procedure-specific results start here

*/

E o S R T R B R I

i

PROG M SMATCH: struct {
unsi gned | ow,
unsi gned hi gh;

i
default: struct {
/*
* voi d. Cases include PROG UNAVAI L,
* PROC_UNAVAI L, and GARBAGE_ARGS.
*/
i
i
i
/*
* Reply to an RPC request that was rejected by the server.
* The request can be rejected because of two reasons - either the server is
* not running a conpatible version of the RPC protocol (RPC M SMATCH), or
* the server refused to authenticate the caller (AUTH ERROR). |In the case of
* an RPC version nmismatch, the server returns the | owest and hi ghest supported
* RPC version nunbers. In the case of refused authentication, the failure
* status is returned.
*

/
struct rejected_reply {
union switch (enumreject_stat) {
RPC M SMATCH: struct ({
unsi gned | ow;
unsi gned hi gh;
b
AUTH ERROR: enum aut h_st at;

Sun Microsystems Release 2.0

RPC Protocol Spec Page 9

Appendix A: Authentication Parameter Specification

As previously stated, authentication parameters are opague, but open-ended to the rest of the RPC proto-
col. This section defines some *‘flavors’ of authentication which have been implemented at (and sup-
ported by) Sun.

A.1l. Null Authentication

Often calls must be made where the caller does not know who he is and the server does not care who the
caller is. In this case, the auth_flavor value (the discriminant of the opague auth’s union) of the RPC
message’ s credentials, verifier, and response verifier is AUTH_NULL (0). The bytes of the auth_body
string are undefined. It is recommended that the string length be zero.

The caller of aremote procedure may wish to identify himself as heis identified on a UNIX system. The
value of the credential’s discriminant of an RPC call message is AUTH_UNIX (1). The bytes of the
credential’s string encode the the following (XDR) structure:

struct auth_unix {

unsi gned st anp;

string machi nenane<255>;
unsi gned ui d;

unsi gned gi d;

unsi gned gi ds<10>;

}s

The st anp is an arbitrary id which the caller machine may generate. The machi nenane is the name
of the caller’s machine (like **krypton’’). Theui d isthe caller’ s effective user id. Thegi d isthe callers
effective group id. The gi ds is a counted array of groups which contain the caller as a member. The
verifier accompanying the credentials should be of AUTH_NULL (defined above).

The value of the discriminate of the response verifier received in the reply message from the server may
be AUTH _NULL or AUTH_SHORT (2). In the case of AUTH_SHORT, the bytes of the response
verifier 's string encode an aut h_opaque structure. This new aut h_opaque structure may now be
passed to the server instead of the origina AUTH_UNIX flavor credentials. The server keeps a cache
which maps short hand auth_opaque structures (passed back via a AUTH_SHORT style r esponse
veri fier) tothe original credentials of the caler. The caller can save network bandwidth and server
cpu cycles by using the new credentials.

The server may flush the short hand auth_opaque structure at any time. If this happens, the remote pro-
cedure call message will be rejected due to an authentication error. The reason for the failure will be
AUTH_REJECTEDCRED. At this point, the caller may wish to try the originad AUTH_UNIX style of
credentials.

Sun Microsystems Release 2.0

Page 10 RPC Protocol Spec
Appendix B: Record Marking Standard

When RPC messages are passed on top of a byte stream protocol (like TCP/IP), it is necessary, or at least
desirable, to delimit one message from another in order to detect and possibly recover from user protocol
errors. This is called record marking (RM). Sun uses this RM/TCP/IP transport for passing RPC mes-
sages on TCP streams. One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a four-byte header followed
by 0 to 2811 bytes of fragment data. The bytes encode an unsigned binary number; as with XDR
integers, the byte order is from highest to lowest. The number encodes two values — a boolean which
indicates whether the fragment is the last fragment of the record (bit value 1 implies the fragment is the
last fragment) and a 31-bit unsigned binary value which is the length in bytes of the fragment’sdata. The
boolean value is the highest-order bit of the header; the length is the 31 low-order bits. (Note that this
record specification is not in XDR standard form!)

Sun Microsystems Release 2.0

RPC Protocol Spec Page 11

Appendix C: Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers to UDP/IP or TCP/IP port numbers.
This program makes dynamic binding of remote programs possible.

This is desirable because the range of reserved port numbers is very small and the number of potential
remote programs is very large. By running only the port mapper on areserved port, the port numbers of
other remote programs can be ascertained by querying the port mapper.

C.1. ThePort Mapper RPC Protocol

The protocol is specified by the XDR description language.

Port Mapper RPC Program Nunber: 100000
Version Nunmber: 1
Supported Transports:
UDP/ I P on port 111
RM TCP/I P on port 111

/*

* Handy transport protocol nunbers

*/
#def i ne | PPROTO_TCP 6 /* protocol nunmber used for rpc/rmtcp/ip */
#def i ne | PPROTO_UDP 17 /* protocol number used for rpc/udp/ip */

/* Procedures */

/*

* Convention: procedure zero of any protocol takes no paraneters
* and returns no results.

*/

0. PMAPPROC NULL () returns ()

/
Procedure 1, setting a mapping:
VWhen a program first beconmes available on a
machine, it registers itself with the port mapper program on the
same machi ne. The program passes its program nunber (prog),
versi on number (vers), transport protocol number (prot),
and the port (port) on which it awaits service request. The
procedure returns success whose value is TRUE i f the procedure
successfully established the mappi ng and FALSE ot herwi se. The
procedure will refuse to establish a mapping if one already exists
for the tuple [prog, vers, prot].
/
1. PMAPPROC SET (prog, vers, prot, port) returns (success)
unsi gned prog;
unsi gned vers;
unsi gned prot;
unsi gned port;
bool ean success;

E I R T T R S N

Sun Microsystems Release 2.0

Page 12 RPC Protocol Spec

Procedure 2, Unsetting a mappi ng:

VWhen a program becones unavail able, it should unregister itself
with the port mapper programon the same machine. The paraneters
and results have neanings identical to those of PMAPPROC SET.
/
2. PMAPPROC UNSET (prog, vers, dunmmyl, dunmy2) returns (success)
unsi gned prog;
unsi gned vers;
unsi gned dumyl; /* this value is always ignored */
unsi gned dummy?2; /* this value is always ignored */
bool ean success;

E o S I

Procedure 3, |ooking-up a mapping:
G ven a program nunber (prog), version nunber (vers) and
transport protocol number (prot), this procedure returns the port
nunber on which the programis awaiting call requests. A port
val ue of zeros means that the program has not been registered.
/
3. PMAPPROC GETPORT (prog, vers, prot, dunmy) returns (port)
unsi gned prog;
unsi gned vers;
unsi gned prot;
unsi gned dummy; /* this value is always ignored */
unsi gned port; [/* zero means the programis not registered */

E o I I

Procedure 4, dunping the mappi ngs:
This procedure enunerates all entries in the port mapper’s database.
The procedure takes no paraneters and returns a ‘‘list’’ of
[program version, prot, port] val ues.
/
4. PMAPPROC DUWMP () returns (maplist)
struct maplist {
uni on switch (bool ean) {
FALSE: struct { /* void, end of list */ };
TRUE: struct {
unsi gned prog;
unsi gned vers;
unsi gned prot;
unsi gned port;
struct maplist the_rest;

E o S I

Sun Microsystems Release 2.0

RPC Protocol Spec Page 13

E o R R T B S R N R I A R S B

5.

Procedure 5, indirect call routine:

The procedures allows a caller to call another renote procedure

on the sane nmachi ne w thout knowi ng the renpte procedure’s port

nunber. Its intended use is for supporting broadcasts to arbitrary
renote prograns via the well-known port mapper’s port. The paraneters
prog, vers, proc, and the bytes of args are the program nunber,
versi on nunber, procedure number, and paranmeters the the renote

pr ocedure.

NB:

1. This procedure only sends a response if the procedure was
successfully executed and is silent (No response) otherw se.
2. The port napper comunicates with the renpte programvia
UDP/ I P only.

The procedure returns the port number of the renote program and
the bytes of results are the results of the renote procedure.

PMAPPRCC CALLIT (prog, vers, proc, args) returns (port, results)
unsi gned prog;
unsi gned vers;
unsi gned proc;
string args<>;
unsi gned port;
string results<>;

Sun Microsystems Release 2.0

