
External Data Representation

Protocol Specification

Sun Microsystems Release 2.0

External Data Representation

Protocol Specification

1. Introduction

This manual describes library routines that allow a C programmer to describe arbitrary data structures in a
machine-independent fashion. The eXternal Data Representation (XDR) standard is the backbone of
Sun’s Remote Procedure Call package, in the sense that data for remote procedure calls is transmitted
using the standard. XDR library routines should be used to transmit data that is accessed (read or written)
by more than one type of machine.

This manual contains a description of XDR library routines, a guide to accessing currently available XDR
streams, information on defining new streams and data types, and a formal definition of the XDR stan-
dard. XDR was designed to work across different languages, operating systems, and machine architec-
tures. Most users (particularly RPC users) only need the information in sections 2 and 3 of this docu-
ment. Programmers wishing to implement RPC and XDR on new machines will need the information in
sections 4 through 6. Advanced topics, not necessary for all implementations, are covered in section 7.

On Sun systems, C programs that want to use XDR routines must include the file <rpc/rpc.h>, which
contains all the necessary interfaces to the XDR system. Since the C library libc.a contains all the
XDR routines, compile as normal.

cc program.c

2. Justification

Consider the following two programs, writer:

#include <stdio.h>

main() /* writer.c */
{

long i;

for (i = 0; i < 8; i++) {
if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {

fprintf(stderr, "failed!\n");
exit(1);

}
}

}

and reader:

Sun Microsystems Release 2.0

Page 2 XDR Protocol Spec

#include <stdio.h>

main() /* reader.c */
{

long i, j;

for (j = 0; j < 8; j++) {
if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {

fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");

}

The two programs appear to be portable, because (a) they pass lint checking, and (b) they exhibit the
same behavior when executed on two different hardware architectures, a Sun and a VAX.

Piping the output of the writer program to the reader program gives identical results on a Sun or a
VAX.‡

sun% writer | reader
0 1 2 3 4 5 6 7
sun%

vax% writer | reader
0 1 2 3 4 5 6 7
vax%

With the advent of local area networks and Berkeley’s 4.2 BSD UNIX came the concept of ‘‘network
pipes’’ — a process produces data on one machine, and a second process consumes data on another
machine. A network pipe can be constructed with writer and reader. Here are the results if the first
produces data on a Sun, and the second consumes data on a VAX.

sun% writer | rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296 117440512
sun%

Identical results can be obtained by executing writer on the VAX and reader on the Sun. These
results occur because the byte ordering of long integers differs between the VAX and the Sun, even
though word size is the same. Note that 16777216 is 224 — when four bytes are reversed, the 1 winds up
in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for portable data. Programs can
be made data-portable by replacing the read() and write() calls with calls to an XDR library routine
xdr_long(), a filter that knows the standard representation of a long integer in its external form. Here
are the revised versions of writer:

Sun Microsystems Release 2.0

XDR Protocol Spec Page 3

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of the rpc library */

main() /* writer.c */
{

XDR xdrs;
long i;

xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
for (i = 0; i < 8; i++) {

if (! xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
}

}

and reader:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of the rpc library */

main() /* reader.c */
{

XDR xdrs;
long i, j;

xdrstdio_create(&xdrs, stdin, XDR_DECODE);
for (j = 0; j < 8; j++) {

if (! xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);

}
printf("\n");

}

The new programs were executed on a Sun, on a VAX, and from a Sun to a VAX; the results are shown
below.

sun% writer | reader
0 1 2 3 4 5 6 7
sun%

vax% writer | reader
0 1 2 3 4 5 6 7
vax%

sun% writer | rsh vax reader
0 1 2 3 4 5 6 7
sun%

Sun Microsystems Release 2.0

Page 4 XDR Protocol Spec

Dealing with integers is just the tip of the portable-data iceberg. Arbitrary data structures present porta-
bility problems, particularly with respect to alignment and pointers. Alignment on word boundaries may
cause the size of a structure to vary from machine to machine. Pointers are convenient to use, but have no
meaning outside the machine where they are defined.

The XDR library package solves data portability problems. It allows you to write and read arbitrary C
constructs in a consistent, specified, well-documented manner. Thus, it makes sense to use the library
even when the data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes), structures, unions, and
arrays, to name a few. Using more primitive routines, you can write your own specific XDR routines to
describe arbitrary data structures, including elements of arrays, arms of unions, or objects pointed at from
other structures. The structures themselves may contain arrays of arbitrary elements, or pointers to other
structures.

Let’s examine the two programs more closely. There is a family of XDR stream creation routines in
which each member treats the stream of bits differently. In our example, data is manipulated using stan-
dard I/O routines, so we use xdrstdio_create(). The parameters to XDR stream creation routines
vary according to their function. In our example, xdrstdio_create() takes a pointer to an XDR
structure that it initializes, a pointer to a FILE that the input or output is performed on, and the operation.
The operation may be XDR_ENCODE for serializing in the writer program, or XDR_DECODE for
deserializing in the reader program.

Note: RPC clients never need to create XDR streams; the RPC system itself creates these streams, which
are then passed to the clients.

The xdr_long() primitive is characteristic of most XDR library primitives and all client XDR rou-
tines. First, the routine returns FALSE (0) if it fails, and TRUE (1) if it succeeds. Second, for each data
type, xxx, there is an associated XDR routine of the form:

xdr_xxx(xdrs, fp)
XDR *xdrs;
xxx *fp;

{
}

In our case, xxx is long, and the corresponding XDR routine is a primitive, xdr_long. The client
could also define an arbitrary structure xxx in which case the client would also supply the routine
xdr_xxx, describing each field by calling XDR routines of the appropriate type. In all cases the first
parameter, xdrs can be treated as an opaque handle, and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to serialize or deserialize
data. This feature is critical to software engineering of portable data. The idea is to call the same routine
for either operation — this almost guarantees that serialized data can also be deserialized. One routine is
used by both producer and consumer of networked data. This is implemented by always passing the
address of an object rather than the object itself — only in the case of deserialization is the object
modified. This feature is not shown in our trivial example, but its value becomes obvious when nontrivial
data structures are passed among machines. If needed, you can obtain the direction of the XDR opera-
tion. See section 3.7 for details.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 5

Let’s look at a slightly more complicated example. Assume that a person’s gross assets and liabilities are
to be exchanged among processes. Also assume that these values are important enough to warrant their
own data type:

struct gnumbers {
long g_assets;
long g_liabilities;

};

The corresponding XDR routine describing this structure would be:

bool_t /* TRUE is success, FALSE is failure */
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

{
if (xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities))
return(TRUE);

return(FALSE);
}

Note that the parameter xdrs is never inspected or modified; it is only passed on to the subcomponent
routines. It is imperative to inspect the return value of each XDR routine call, and to give up immediately
and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose only values are TRUE (1)
and FALSE (0). This document uses the following definitions:

#define bool_t int
#define TRUE 1
#define FALSE 0

#define enum_t int /* enum_t’s are used for generic enum’s */

Keeping these conventions in mind, xdr_gnumbers() can be rewritten as follows:

xdr_gnumbers(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

{
return (xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities));
}

This document uses both coding styles.

Sun Microsystems Release 2.0

Page 6 XDR Protocol Spec

3. XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with basic data types and moves on to con-
structed data types. Finally, XDR utilities are discussed. The interface to these primitives and utilities is
defined in the include file <rpc/xdr.h>, automatically included by <rpc/rpc.h>.

3.1. Number Filters

The XDR library provides primitives that translate between C numbers and their corresponding external
representations. The primitives cover the set of numbers in:

[signed,unsigned]*[short,int,long]

Specifically, the six primitives are:

bool_t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

bool_t xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

bool_t xdr_long(xdrs, lip)
XDR *xdrs;
long *lip;

bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;

bool_t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool_t xdr_u_short(xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address of the number
that provides data to the stream or receives data from it. All routines return TRUE if they complete suc-
cessfully, and FALSE otherwise.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 7

3.2. Floating Point Filters

The XDR library also provides primitive routines for C’s floating point types:

bool_t xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

bool_t xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter, xdrs is an XDR stream handle. The second parameter is the address of the floating
point number that provides data to the stream or receives data from it. All routines return TRUE if they
complete successfully, and FALSE otherwise.

Note: Since the numbers are represented in IEEE floating point, routines may fail when decoding a valid
IEEE representation into a machine-specific representation, or vice-versa.

3.3. Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive assumes that a C enum
has the same representation inside the machine as a C integer. The boolean type is an important instance
of the enum. The external representation of a boolean is always one (TRUE) or zero (FALSE).

#define bool_t int
#define FALSE 0
#define TRUE 1

#define enum_t int

bool_t xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that provides data to, or receives
data from, the stream xdrs. The routines return TRUE if they complete successfully, and FALSE other-
wise.

3.4. No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed or
required. The library provides such a routine:

bool_t xdr_void(); /* always returns TRUE */

Sun Microsystems Release 2.0

Page 8 XDR Protocol Spec

3.5. Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform more complicated
functions then the primitives discussed above. This section includes primitives for strings, arrays, unions,
and pointers to structures. Constructed data type primitives may use memory management. In many
cases, memory is allocated when deserializing data with XDR_DECODE. Therefore, the XDR package
must provide means to deallocate memory. This is done by an XDR operation, XDR_FREE. To review,
the three XDR directional operations are XDR_ENCODE, XDR_DECODE, and XDR_FREE.

3.5.1. Strings

In C, a string is defined as a sequence of bytes terminated by a null byte, which is not considered when
calculating string length. However, when a string is passed or manipulated, a pointer to it is employed.
Therefore, the XDR library defines a string to be a char *, and not a sequence of characters. The exter-
nal representation of a string is drastically different from its internal representation. Externally, strings
are represented as sequences of ASCII characters, while internally, they are represented with character
pointers. Conversion between the two representations is accomplished with the routine
xdr_string():

bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter xdrs is the XDR stream handle. The second parameter sp is a pointer to a string
(type char **). The third parameter maxlength specifies the maximum number of bytes allowed
during encoding or decoding; its value is usually specified by a protocol. For example, a protocol
specification may say that a file name may be no longer than 255 characters. The routine returns FALSE
if the number of characters exceeds maxlength, and TRUE if it doesn’t.

The behavior of xdr_string() is similar to the behavior of other routines discussed in this section.
The direction XDR_ENCODE is easiest to understand. The parameter sp points to a string of a certain
length; if it does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming string is determined; it must
not exceed maxlength. Next sp is dereferenced; if the the value is NULL, then a string of the
appropriate length is allocated and *sp is set to this string. If the original value of *sp is non-NULL,
then the XDR package assumes that a target area has been allocated, which can hold strings no longer
than maxlength. In either case, the string is decoded into the target area. The routine then appends a
null character to the string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the string is not NULL, it is
freed and *sp is set to NULL. In this operation, xdr_string ignores the maxlength parameter.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 9

3.5.2. Byte Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ from strings in the fol-
lowing three ways: 1) the length of the array (the byte count) is explicitly located in an unsigned integer,
2) the byte sequence is not terminated by a null character, and 3) the external representation of the bytes
is the same as their internal representation. The primitive xdr_bytes() converts between the internal
and external representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *lp;
u_int maxlength;

The usage of the first, second and fourth parameters are identical to the first, second and third parameters
of xdr_string(), respectively. The length of the byte area is obtained by dereferencing lp when
serializing; *lp is set to the byte length when deserializing.

3.5.3. Arrays

The XDR library package provides a primitive for handling arrays of arbitrary elements. The
xdr_bytes() routine treats a subset of generic arrays, in which the size of array elements is known to
be 1, and the external description of each element is built-in. The generic array primitive,
xdr_array() requires parameters identical to those of xdr_bytes() plus two more: the size of
array elements, and an XDR routine to handle each of the elements. This routine is called to encode or
decode each element of the array.

bool_t xdr_array(xdrs, ap, lp, maxlength, elementsize, xdr_element)
XDR *xdrs;
char **ap;
u_int *lp;
u_int maxlength;
u_int elementsize;
bool_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL when the array is being
deserialized, XDR allocates an array of the appropriate size and sets *ap to that array. The element
count of the array is obtained from *lp when the array is serialized; *lp is set to the array length when
the array is deserialized. The parameter maxlength is the maximum number of elements that the array
is allowed to have; elementsize is the byte size of each element of the array (the C function
sizeof() can be used to obtain this value). The routine xdr_element is called to serialize, deserial-
ize, or free each element of the array.

Examples

Before defining more constructed data types, it is appropriate to present three examples.

Sun Microsystems Release 2.0

Page 10 XDR Protocol Spec

Example A

A user on a networked machine can be identified by (a) the machine name, such as krypton: see
gethostname (3); (b) the user’s UID: see geteuid (2); and (c) the group numbers to which the user belongs:
see getgroups (2). A structure with this information and its associated XDR routine could be coded like
this:

struct netuser {
char *nu_machinename;
int nu_uid;
u_int nu_glen;
int *nu_gids;

};
#define NLEN 255 /* machine names must be shorter than 256 chars */
#define NGRPS 20 /* user can’t be a member of more than 20 groups */

bool_t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{
return (xdr_string(xdrs, &nup->nu_machinename, NLEN) &&

xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,

sizeof (int), xdr_int));
}

Example B

A party of network users could be implemented as an array of netuser structure. The declaration and
its associated XDR routines are as follows:

struct party {
u_int p_len;
struct netuser *p_nusers;

};
#define PLEN 500 /* max number of users in a party */

bool_t
xdr_party(xdrs, pp)

XDR *xdrs;
struct party *pp;

{
return (xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));
}

Sun Microsystems Release 2.0

XDR Protocol Spec Page 11

Example C

The well-known parameters to main(), argc and argv can be combined into a structure. An array of
these structures can make up a history of commands. The declarations and XDR routines might look like:

struct cmd {
u_int c_argc;
char **c_argv;

};
#define ALEN 1000 /* args can be no longer than 1000 chars */
#define NARGC 100 /* commands may have no more than 100 args */

struct history {
u_int h_len;
struct cmd *h_cmds;

};
#define NCMDS 75 /* history is no more than 75 commands */

bool_t
xdr_wrap_string(xdrs, sp)

XDR *xdrs;
char **sp;

{
return (xdr_string(xdrs, sp, ALEN));

}

bool_t
xdr_cmd(xdrs, cp)

XDR *xdrs;
struct cmd *cp;

{
return (xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrap_string));
}

bool_t
xdr_history(xdrs, hp)

XDR *xdrs;
struct history *hp;

{
return (xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));
}

The most confusing part of this example is that the routine xdr_wrap_string() is needed to package
the xdr_string() routine, because the implementation of xdr_array() only passes two parame-
ters to the array element description routine; xdr_wrap_string() supplies the third parameter to
xdr_string().

By now the recursive nature of the XDR library should be obvious. Let’s continue with more constructed
data types.

Sun Microsystems Release 2.0

Page 12 XDR Protocol Spec

3.5.4. Opaque Data

In some protocols, handles are passed from a server to client. The client passes the handle back to the
server at some later time. Handles are never inspected by clients; they are obtained and submitted. That
is to say, handles are opaque. The primitive xdr_opaque() is used for describing fixed sized, opaque
bytes.

bool_t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the opaque object. By
definition, the actual data contained in the opaque object are not machine portable.

3.5.5. Fixed Sized Arrays

The XDR library does not provide a primitive for fixed-length arrays (the primitive xdr_array() is for
varying-length arrays). Example A could be rewritten to use fixed-sized arrays in the following fashion:

#define NLEN 255 /* machine names must be shorter than 256 chars */
#define NGRPS 20 /* user cannot be a member of more than 20 groups */

struct netuser {
char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];

};

bool_t
xdr_netuser(xdrs, nup)

XDR *xdrs;
struct netuser *nup;

{
int i;

if (! xdr_string(xdrs, &nup->nu_machinename, NLEN))
return (FALSE);

if (! xdr_int(xdrs, &nup->nu_uid))
return (FALSE);

for (i = 0; i < NGRPS; i++) {
if (! xdr_int(xdrs, &nup->nu_gids[i]))

return (FALSE);
}
return (TRUE);

}

Sun Microsystems Release 2.0

XDR Protocol Spec Page 13

Exercise:

Rewrite Example A so that it uses varying-length arrays and so that the netuser structure contains the
actual nu_gids array body as in the example above.

3.5.6. Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C union and an enum_t
value that selects an ‘‘arm’’ of the union.

struct xdr_discrim {
enum_t value;
bool_t (*proc)();

};

bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *arms;
bool_t (*defaultarm)(); /* may equal NULL */

First the routine translates the discriminant of the union located at *dscmp. The discriminant is always
an enum_t. Next the union located at *unp is translated. The parameter arms is a pointer to an array
of xdr_discrim structures. Each structure contains an order pair of [value,proc]. If the union’s
discriminant is equal to the associated value, then the proc is called to translate the union. The end of
the xdr_discrim structure array is denoted by a routine of value NULL (0). If the discriminant is not
found in the arms array, then the defaultarm procedure is called if it is non-NULL; otherwise the
routine returns FALSE.

Example D

Suppose the type of a union may be integer, character pointer (a string), or a gnumbers structure. Also,
assume the union and its current type are declared in a structure. The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {
enum utype utype; /* this is the union’s discriminant */
union {

int ival;
char *pval;
struct gnumbers gn;

} uval;
};

The following constructs and XDR procedure (de)serialize the discriminated union:

Sun Microsystems Release 2.0

Page 14 XDR Protocol Spec

struct xdr_discrim u_tag_arms[4] = {
{ INTEGER, xdr_int },
{ GNUMBERS, xdr_gnumbers }
{ STRING, xdr_wrap_string },
{ __dontcare__, NULL }
/* always terminate arms with a NULL xdr_proc */

}

bool_t
xdr_u_tag(xdrs, utp)

XDR *xdrs;
struct u_tag *utp;

{
return (xdr_union(xdrs, &utp->utype, &utp->uval, u_tag_arms,

NULL));
}

The routine xdr_gnumbers() was presented in Section 2; xdr_wrap_string() was presented in
example C. The default arm parameter to xdr_union() (the last parameter) is NULL in this example.
Therefore the value of the union’s discriminant legally may take on only values listed in the
u_tag_arms array. This example also demonstrates that the elements of the arm’s array do not need to
be sorted.

It is worth pointing out that the values of the discriminant may be sparse, though in this example they are
not. It is always good practice to assign explicitly integer values to each element of the discriminant’s
type. This practice both documents the external representation of the discriminant and guarantees that
different C compilers emit identical discriminant values.

Exercise:

Implement xdr_union() using the other primitives in this section.

3.5.7. Pointers

In C it is often convenient to put pointers to another structure within a structure. The primitive
xdr_reference() makes it easy to serialize, deserialize, and free these referenced structures.

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize;
bool_t (*proc)();

Parameter pp is the address of the pointer to the structure; parameter ssize is the size in bytes of the
structure (use the C function sizeof() to obtain this value); and proc is the XDR routine that
describes the structure. When decoding data, storage is allocated if *pp is NULL.

There is no need for a primitive xdr_struct() to describe structures within structures, because
pointers are always sufficient.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 15

Exercise:

Implement xdr_reference() using xdr_array(). Warning: xdr_reference() and
xdr_array() are NOT interchangeable external representations of data.

Example E

Suppose there is a structure containing a person’s name and a pointer to a gnumbers structure contain-
ing the person’s gross assets and liabilities. The construct is:

struct pgn {
char *name;
struct gnumbers *gnp;

};

The corresponding XDR routine for this structure is:

bool_t
xdr_pgn(xdrs, pp)

XDR *xdrs;
struct pgn *pp;

{
if (xdr_string(xdrs, &pp->name, NLEN) &&

xdr_reference(xdrs, &pp->gnp, sizeof(struct gnumbers),
xdr_gnumbers))

return(TRUE);
return(FALSE);

}

3.5.7.1. Pointer Semantics and XDR

In many applications, C programmers attach double meaning to the values of a pointer. Typically the
value NULL (or zero) means data is not needed, yet some application-specific interpretation applies. In
essence, the C programmer is encoding a discriminated union efficiently by overloading the interpretation
of the value of a pointer. For instance, in example E a NULL pointer value for gnp could indicate that
the person’s assets and liabilities are unknown. That is, the pointer value encodes two things: whether or
not the data is known; and if it is known, where it is located in memory. Linked lists are an extreme
example of the use of application-specific pointer interpretation.

The primitive xdr_reference() cannot and does not attach any special meaning to a NULL-value
pointer during serialization. That is, passing an address of a pointer whose value is NULL to
xdr_reference() when serialing data will most likely cause a memory fault and, on UNIX, a core
dump for debugging.

It is the explicit responsibility of the programmer to expand non-dereferenceable pointers into their
specific semantics. This usually involves describing data with a two-armed discriminated union. One
arm is used when the pointer is valid; the other is used when the pointer is invalid (NULL). Section 7 has
an example (linked lists encoding) that deals with invalid pointer interpretation.

Sun Microsystems Release 2.0

Page 16 XDR Protocol Spec

Exercise:

After reading Section 7, return here and extend example E so that it can correctly deal with null pointer
values.

Exercise:

Using the xdr_union(), xdr_reference() and xdr_void() primitives, implement a generic
pointer handling primitive that implicitly deals with NULL pointers. The XDR library does not provide
such a primitive because it does not want to give the illusion that pointers have meaning in the external
world.

3.6. Non-filter Primitives

XDR streams can be manipulated with the primitives discussed in this section.

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr_destroy(xdrs)
XDR *xdrs;

The routine xdr_getpos() returns an unsigned integer that describes the current position in the data
stream. Warning: In some XDR streams, the returned value of xdr_getpos() is meaningless; the rou-
tine returns a −1 in this case (though −1 should be a legitimate value).

The routine xdr_setpos() sets a stream position to pos. Warning: In some XDR streams, setting a
position is impossible; in such cases, xdr_setpos() will return FALSE. This routine will also fail if
the requested position is out-of-bounds. The definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream after calling this routine
is undefined.

3.7. XDR Operation Directions

At times you may wish to optimize XDR routines by taking advantage of the direction of the operation
(XDR_ENCODE, XDR_DECODE, or XDR_FREE). The value xdrs->x_op always contains the
direction of the XDR operation. Programmers are not encouraged to take advantage of this information.
Therefore, no example is presented here. However, an example in Section 7 demonstrates the usefulness
of the xdrs->x_op field.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 17

4. XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine. These creation routines take
arguments that are tailored to the specific properties of the stream.

Streams currently exist for (de)serialization of data to or from standard I/O FILE streams, TCP/IP connec-
tions and UNIX files, and memory. Section 5 documents the XDR object and how to make new XDR
streams when they are required.

4.1. Standard I/O Streams

XDR streams can be interfaced to standard I/O using the xdrstdio_create() routine as follows:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr streams are a part of the rpc library */

void
xdrstdio_create(xdrs, fp, x_op)

XDR *xdrs;
FILE *fp;
enum xdr_op x_op;

The routine xdrstdio_create() initializes an XDR stream pointed to by xdrs. The XDR stream
interfaces to the standard I/O library. Parameter fp is an open file, and x_op is an XDR direction.

4.2. Memory Streams

Memory streams allow the streaming of data into or out of a specified area of memory:

#include <rpc/rpc.h>

void
xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdrmem_create() initializes an XDR stream in local memory. The memory is pointed to
by parameter addr; parameter len is the length in bytes of the memory. The parameters xdrs and
x_op are identical to the corresponding parameters of xdrstdio_create(). Currently, the UDP/IP
implementation of RPC uses xdrmem_create(). Complete call or result messages are built in
memory before calling the sendto() system routine.

4.3. Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard that is built on top of the
UNIX file or 4.2 BSD connection interface.

Sun Microsystems Release 2.0

Page 18 XDR Protocol Spec

#include <rpc/rpc.h> /* xdr streams are a part of the rpc library */

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc)(), (*writeproc)();

The routine xdrrec_create() provides an XDR stream interface that allows for a bidirectional, arbi-
trarily long sequence of records. The contents of the records are meant to be data in XDR form. The
stream’s primary use is for interfacing RPC to TCP connections. However, it can be used to stream data
into or out of normal UNIX files.

The parameter xdrs is similar to the corresponding parameter described above. The stream does its own
data buffering similar to that of standard I/O. The parameters sendsize and recvsize determine the
size in bytes of the output and input buffers, respectively; if their values are zero (0), then predetermined
defaults are used. When a buffer needs to be filled or flushed, the routine readproc or writeproc is
called, respectively. The usage and behavior of these routines are similar to the UNIX system calls
read() and write(). However, the first parameter to each of these routines is the opaque parameter
iohandle. The other two parameters buf(and nbytes) and the results (byte count) are identical to
the system routines. If xxx is readproc or writeproc, then it has the following form:

/* returns the actual number of bytes transferred.
* -1 is an error
*/

int
xxx(iohandle, buf, len)

char *iohandle;
char *buf;
int nbytes;

The XDR stream provides means for delimiting records in the byte stream. The implementation details
of delimiting records in a stream are discussed in appendix 1. The primitives that are specific to record
streams are as follows:

bool_t
xdrrec_endofrecord(xdrs, flushnow)

XDR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)

XDR *xdrs;

bool_t
xdrrec_eof(xdrs)

XDR *xdrs;

The routine xdrrec_endofrecord() causes the current outgoing data to be marked as a record. If
the parameter flushnow is TRUE, then the stream’s writeproc() will be called; otherwise, wri-
teproc() will be called when the output buffer has been filled.

The routine xdrrec_skiprecord() causes an input stream’s position to be moved past the current
record boundary and onto the beginning of the next record in the stream.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 19

If there is no more data in the stream’s input buffer, then the routine xdrrec_eof() returns TRUE.
That is not to say that there is no more data in the underlying file descriptor.

5. XDR Stream Implementation

This section provides the abstract data types needed to implement new instances of XDR streams.

5.1. The XDR Object

The following structure defines the interface to an XDR stream:
enum xdr_op { XDR_ENCODE = 0, XDR_DECODE = 1, XDR_FREE = 2 };

typedef struct {
enum xdr_op x_op; /* operation; fast additional param */
struct xdr_ops {

bool_t (*x_getlong)(); /* get a long from underlying stream */
bool_t (*x_putlong)(); /* put a long to " */
bool_t (*x_getbytes)(); /* get some bytes from " */
bool_t (*x_putbytes)(); /* put some bytes to " */
u_int (*x_getpostn)(); /* returns byte offset from beginning */
bool_t (*x_setpostn)(); /* repositions position in stream */
caddr_t (*x_inline)(); /* buf quick ptr to buffered data */
VOID (*x_destroy)(); /* free privates of this xdr_stream */

} *x_ops;
caddr_t x_public; /* users’ data */
caddr_t x_private; /* pointer to private data */
caddr_t x_base; /* private used for position info */
int x_handy; /* extra private word */

} XDR;

The x_op field is the current operation being performed on the stream. This field is important to the
XDR primitives, but should not affect a stream’s implementation. That is, a stream’s implementation
should not depend on this value. The fields x_private, x_base, and x_handy are private to the par-
ticular stream’s implementation. The field x_public is for the XDR client and should never be used by
the XDR stream implementations or the XDR primitives.

Macros for accessing operations x_getpostn(), x_setpostn(), and x_destroy() were defined
in Section 3.6. The operation x_inline() takes two parameters: an XDR *, and an unsigned integer,
which is a byte count. The routine returns a pointer to a piece of the stream’s internal buffer. The caller
can then use the buffer segment for any purpose. From the stream’s point of view, the bytes in the buffer
segment have been consumed or put. The routine may return NULL if it cannot return a buffer segment
of the requested size. (The x_inline routine is for cycle squeezers. Use of the resulting buffer is not
data-portable. Users are encouraged not to use this feature.)

The operations x_getbytes() and x_putbytes() blindly get and put sequences of bytes from or to
the underlying stream; they return TRUE if they are successful, and FALSE otherwise. The routines have
identical parameters (replace xxx):

bool_t
xxxbytes(xdrs, buf, bytecount)

XDR *xdrs;
char *buf;
u_int bytecount;

Sun Microsystems Release 2.0

Page 20 XDR Protocol Spec

The operations x_getlong() and x_putlong() receive and put long numbers from and to the data
stream. It is the responsibility of these routines to translate the numbers between the machine representa-
tion and the (standard) external representation. The UNIX primitives htonl() and ntohl() can be
helpful in accomplishing this. Section 6 defines the standard representation of numbers. The higher-level
XDR implementation assumes that signed and unsigned long integers contain the same number of bits,
and that nonnegative integers have the same bit representations as unsigned integers. The routines return
TRUE if they succeed, and FALSE otherwise. They have identical parameters:

bool_t
xxxlong(xdrs, lp)

XDR *xdrs;
long *lp;

Implementors of new XDR streams must make an XDR structure (with new operation routines) available
to clients, using some kind of create routine.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 21

6. XDR Standard

This section defines the external data representation standard. The standard is independent of languages,
operating systems and hardware architectures. Once data is shared among machines, it should not matter
that the data was produced on a Sun, but is consumed by a VAX (or vice versa). Similarly the choice of
operating systems should have no influence on how the data is represented externally. For programming
languages, data produced by a C program should be readable by a FORTRAN or Pascal program.

The external data representation standard depends on the assumption that bytes (or octets) are portable. A
byte is defined to be eight bits of data. It is assumed that hardware that encodes bytes onto various media
will preserve the bytes’ meanings across hardware boundaries. For example, the Ethernet standard sug-
gests that bytes be encoded ‘‘little endian’’ style. Both Sun and VAX hardware implementations adhere
to the standard.

The XDR standard also suggests a language used to describe data. The language is a bastardized C; it is a
data description language, not a programming language. (The Xerox Courier Standard uses bastardized
Mesa as its data description language.)

6.1. Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data. The bytes are num-
bered 0 through n−1, where (n mod 4)=0. The bytes are read or written to some byte stream such that
byte m always precedes byte m+1.

6.2. Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range [-
2147483648,2147483647]. The integer is represented in two’s complement notation. The most
and least significant bytes are 0 and 3, respectively. The data description of integers is integer.

6.3. Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range
[0,4294967295]. It is represented by an unsigned binary number whose most and least significant
bytes are 0 and 3, respectively. The data description of unsigned integers is unsigned.

6.4. Enumerations

Enumerations have the same representation as integers. Enumerations are handy for describing subsets of
the integers. The data description of enumerated data is as follows:

typedef enum { name = value, } type-name;

For example the three colors red, yellow and blue could be described by an enumerated type:

typedef enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

Sun Microsystems Release 2.0

Page 22 XDR Protocol Spec

6.5. Booleans

Booleans are important enough and occur frequently enough to warrant their own explicit type in the
standard. Boolean is an enumeration with the following form:

typedef enum { FALSE = 0, TRUE = 1 } boolean;

6.6. Hyper Integer and Hyper Unsigned

The standard also defines 64-bit (8-byte) numbers called hyper integer and hyper unsigned.
Their representations are the obvious extensions of the integer and unsigned defined above. The most and
least significant bytes are 0 and 7, respectively.

6.7. Floating Point and Double Precision

The standard defines the encoding for the floating point data types float (32 bits or 4 bytes) and dou-
ble (64 bits or 8 bytes). The encoding used is the IEEE standard for normalized single- and double-
precision floating point numbers. See the IEEE floating point standard for more information. The stan-
dard encodes the following three fields, which describe the floating point number:

S The sign of the number. Values 0 and 1 represent positive and negative, respectively.

E The exponent of the number, base 2. Floats devote 8 bits to this field, while doubles devote 11 bits.
The exponents for float and double are biased by 127 and 1023, respectively.

F The fractional part of the number’s mantissa, base 2. Floats devote 23 bits to this field, while dou-
bles devote 52 bits.

Therefore, the floating point number is described by:

(−1)S*2E−Bias*1.F

Just as the most and least significant bytes of a number are 0 and 3, the most and least significant bits of a
single-precision floating point number are 0 and 31. The beginning bit (and most significant bit) offsets
of S, E, and F are 0, 1, and 9, respectively.

Doubles have the analogous extensions. The beginning bit (and most significant bit) offsets of S, E, and
F are 0, 1, and 12, respectively.

The IEEE specification should be consulted concerning the encoding for signed zero, signed infinity
(overflow), and denormalized numbers (underflow). Under IEEE specifications, the ‘‘NaN’’ (not a
number) is system dependent and should not be used.

6.8. Opaque Data

At times fixed-sized uninterpreted data needs to be passed among machines. This data is called opaque
and is described as:

typedef opaque type-name[n];
opaque name[n];

where n is the (static) number of bytes necessary to contain the opaque data. If n is not a multiple of
four, then the n bytes are followed by enough (up to 3) zero-valued bytes to make the total byte count of
the opaque object a multiple of four.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 23

6.9. Counted Byte Strings

The standard defines a string of n (numbered 0 through n−1) bytes to be the number n encoded as
unsigned, and followed by the n bytes of the string. If n is not a multiple of four, then the n bytes are
followed by enough (up to 3) zero-valued bytes to make the total byte count a multiple of four. The data
description of strings is as follows:

typedef string type-name<N>;
typedef string type-name<>;
string name<N>;
string name<>;

Note that the data description language uses angle brackets (< and >) to denote anything that is varying-
length (as opposed to square brackets to denote fixed-length sequences of data).

The constant N denotes an upper bound of the number of bytes that a string may contain. If N is not
specified, it is assumed to be 232−1, the maximum length. The constant N would normally be found in a
protocol specification. For example, a filing protocol may state that a file name can be no longer than 255
bytes, such as:

string filename<255>;

The XDR specification does not say what the individual bytes of a string represent; this important infor-
mation is left to higher-level specifications. A reasonable default is to assume that the bytes encode
ASCII characters.

6.10. Fixed Arrays

The data description for fixed-size arrays of homogeneous elements is as follows:

typedef elementtype type-name[n];
elementtype name[n];

Fixed-size arrays of elements numbered 0 through n−1 are encoded by individually encoding the ele-
ments of the array in their natural order, 0 through n−1.

6.11. Counted Arrays

Counted arrays provide the ability to encode varyiable-length arrays of homogeneous elements. The
array is encoded as: the element count n (an unsigned integer), followed by the encoding of each of the
array’s elements, starting with element 0 and progressing through element n−1. The data description for
counted arrays is similar to that of counted strings:

typedef elementtype type-name<N>;
typedef elementtype type-name<>;
elementtype name<N>;
elementtype name<>;

Again, the constant N specifies the maximum acceptable element count of an array; if N is not specified,
it is assumed to be 232−1.

Sun Microsystems Release 2.0

Page 24 XDR Protocol Spec

6.12. Structures

The data description for structures is very similar to that of standard C:

typedef struct {
component-type component-name;
...

} type-name;

The components of the structure are encoded in the order of their declaration in the structure.

6.13. Discriminated Unions

A discriminated union is a type composed of a discriminant followed by a type selected from a set of
prearranged types according to the value of the discriminant. The type of the discriminant is always an
enumeration. The component types are called ‘‘arms’’ of the union. The discriminated union is encoded
as its discriminant followed by the encoding of the implied arm. The data description for discriminated
unions is as follows:

typedef union switch (discriminant-type) {
discriminant-value: arm-type;
...
default: default-arm-type;

} type-name;

The default arm is optional. If it is not specified, then a valid encoding of the union cannot take on
unspecified discriminant values. Most specifications neither need nor use default arms.

6.14. Missing Specifications

The standard lacks representations for bit fields and bitmaps, since the standard is based on bytes. This is
not to say that no specification should be attempted.

6.15. Library Primitive / XDR Standard Cross Reference

The following table describes the association between the C library primitives discussed in Section 3, and
the standard data types defined in this section:

Sun Microsystems Release 2.0

XDR Protocol Spec Page 25

��
C Primitive XDR Type Sections��
xdr_int

xdr_long integer 3.1, 6.2
xdr_short��
xdr_u_int

xdr_u_long unsigned 3.1, 6.3
xdr_u_short��

- hyper integer 6.6
hyper unsigned��

xdr_float float 3.2, 6.7��
xdr_double double 3.2, 6.7��

xdr_enum enum_t 3.3, 6.4��
xdr_bool bool_t 3.3, 6.5��

xdr_string string 3.5.1, 6.9
xdr_bytes 3.5.2��
xdr_array (varying arrays) 3.5.3, 6.11��

- (fixed arrays) 3.5.5, 6.10��
xdr_opaque opaque 3.5.4, 6.8��

xdr_union union 3.5.6, 6.13��
xdr_reference - 3.5.7��

- struct 6.6���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Sun Microsystems Release 2.0

Page 26 XDR Protocol Spec

7. Advanced Topics

This section describes techniques for passing data structures that are not covered in the preceding sec-
tions. Such structures include linked lists (of arbitrary lengths). Unlike the simpler examples covered in
the earlier sections, the following examples are written using both the XDR C library routines and the
XDR data description language. Section 6 describes the XDR data definition language used below.

7.1. Linked Lists

The last example in Section 2 presented a C data structure and its associated XDR routines for a person’s
gross assets and liabilities. The example is duplicated below:

struct gnumbers {
long g_assets;
long g_liabilities;

};

bool_t
xdr_gnumbers(xdrs, gp)

XDR *xdrs;
struct gnumbers *gp;

{
if (xdr_long(xdrs, &(gp->g_assets)))

return (xdr_long(xdrs, &(gp->g_liabilities)));
return (FALSE);

}

Now assume that we wish to implement a linked list of such information. A data structure could be con-
structed as follows:

typedef struct gnnode {
struct gnumbers gn_numbers;
struct gnnode *nxt;

};

typedef struct gnnode *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is not merely a con-
venient shorthand for a structure. Similarly the nxt field is used to indicate whether or not the object has
terminated. Unfortunately, if the object continues, the nxt field is also the address of where it continues.
The link addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive type declaration of
gnumbers_list:

struct gnumbers {
unsigned g_assets;
unsigned g_liabilities;

};

Sun Microsystems Release 2.0

XDR Protocol Spec Page 27

typedef union switch (boolean) {
case TRUE: struct {

struct gnumbers current_element;
gnumbers_list rest_of_list;

};
case FALSE: struct {};

} gnumbers_list;

In this description, the boolean indicates whether there is more data following it. If the boolean is
FALSE, then it is the last data field of the structure. If it is TRUE, then it is followed by a gnumbers
structure and (recursively) by a gnumbers_list (the rest of the object). Note that the C declaration
has no boolean explicitly declared in it (though the nxt field implicitly carries the information), while
the XDR data description has no pointer explicitly declared in it.

Hints for writing a set of XDR routines to successfully (de)serialize a linked list of entries can be taken
from the XDR description of the pointer-less data. The set consists of the mutually recursive routines
xdr_gnumbers_list, xdr_wrap_list, and xdr_gnnode.

bool_t
xdr_gnnode(xdrs, gp)

XDR *xdrs;
struct gnnode *gp;

{
return (xdr_gnumbers(xdrs, &(gp->gn_numbers)) &&

xdr_gnumbers_list(xdrs, &(gp->nxt)));
}

bool_t
xdr_wrap_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

{
return (xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnnode));
}

Sun Microsystems Release 2.0

Page 28 XDR Protocol Spec

struct xdr_discrim choices[2] = {
/* called if another node needs (de)serializing */
{ TRUE, xdr_wrap_list },

/* called when there are no more nodes to be (de)serialized */
{ FALSE, xdr_void }

}

bool_t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

{
bool_t more_data;

more_data = (*glp != (gnumbers_list)NULL);
return (xdr_union(xdrs, &more_data, glp, choices, NULL);

}

The entry routine is xdr_gnumbers_list(); its job is to translate between the boolean value
more_data and the list pointer values. If there is no more data, the xdr_union() primitive calls
xdr_void() and the recursion is terminated. Otherwise, xdr_union() calls xdr_wrap_list(),
whose job is to dereference the list pointers. The xdr_gnnode() routine actually (de)serializes data of
the current node of the linked list, and recursively calls xdr_gnumbers_list() to handle the
remainder of the list.

You should convince yourself that these routines function correctly in all three directions
(XDR_ENCODE, XDR_DECODE and XDR_FREE) for linked lists of any length (including zero). Note
that the boolean more_data is always initialized, but in the XDR_DECODE case it is overwritten by an
externally generated value. Also note that the value of the bool_t is lost in the stack. The essence of
the value is reflected in the list’s pointers.

The unfortunate side effect of (de)serializing a list with these routines is that the C stack grows linearly
with respect to the number of nodes in the list. This is due to the recursion. The routines are also hard to
code (and understand) due to the number and nature of primitives involved (such as xdr_reference,
xdr_union, and xdr_void).

Sun Microsystems Release 2.0

XDR Protocol Spec Page 29

The following routine collapses the recursive routines. It also has other optimizations that are discussed
below.

bool_t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

{
bool_t more_data;

while (TRUE) {
more_data = (*glp != (gnumbers_list)NULL);
if (! xdr_bool(xdrs, &more_data))

return (FALSE);
if (! more_data)

return (TRUE); /* we are done */
if (! xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnumbers))
return (FALSE);

glp = &((*glp)->nxt);
}

}

The claim is that this one routine is easier to code and understand than the three recursive routines above.
(It is also buggy, as discussed below.) The parameter glp is treated as the address of the pointer to the
head of the remainder of the list to be (de)serialized. Thus, glp is set to the address of the current node’s
nxt field at the end of the while loop. The discriminated union is implemented in-line; the variable
more_data has the same use in this routine as in the routines above. Its value is recomputed and re-
(de)serialized each iteration of the loop. Since *glp is a pointer to a node, the pointer is dereferenced
using xdr_reference(). Note that the third parameter is truly the size of a node (data values plus
nxt pointer), while xdr_gnumbers() only (de)serializes the data values. We can get away with this
tricky optimization only because the nxt data comes after all legitimate external data.

Sun Microsystems Release 2.0

Page 30 XDR Protocol Spec

The routine is buggy in the XDR_FREE case. The bug is that xdr_reference() will free the node
*glp. Upon return the assignment glp = &((*glp)->nxt) cannot be guaranteed to work since
*glp is no longer a legitimate node. The following is a rewrite that works in all cases. The hard part is
to avoid dereferencing a pointer which has not been initialized or which has been freed.

bool_t
xdr_gnumbers_list(xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

{
bool_t more_data;
bool_t freeing;
gnumbers_list *next; /* the next value of glp */

freeing = (xdrs->x_op == XDR_FREE);
while (TRUE) {

more_data = (*glp != (gnumbers_list)NULL);
if (! xdr_bool(xdrs, &more_data))

return (FALSE);
if (! more_data)

return (TRUE); /* we are done */
if (freeing)

next = &((*glp)->nxt);
if (! xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnumbers))
return (FALSE);

glp = (freeing) ? next : &((*glp)->nxt);
}

}

Note that this is the first example in this document that actually inspects the direction of the operation
xdrs->x_op).(The claim is that the correct iterative implementation is still easier to understand or
code than the recursive implementation. It is certainly more efficient with respect to C stack require-
ments.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 31

Appendix A: The Record Marking Standard

A record is composed of one or more record fragments. A record fragment is a four-byte header followed
by 0 to 231−1 bytes of fragment data. The bytes encode an unsigned binary number; as with XDR
integers, the byte order is from highest to lowest. The number encodes two values — a boolean that indi-
cates whether the fragment is the last fragment of the record (bit value 1 implies the fragment is the last
fragment), and a 31-bit unsigned binary value which is the length in bytes of the fragment’s data. The
boolean value is the high-order bit of the header; the length is the 31 low-order bits.

(Note that this record specification is not in XDR standard form and cannot be implemented using XDR
primitives!)

Sun Microsystems Release 2.0

Page 32 XDR Protocol Spec

Appendix B: Synopsis of XDR Routines

xdr_array()

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

A filter primitive that translates between arrays and their corresponding external representations. The
parameter arrp is the address of the pointer to the array, while sizep is the address of the element
count of the array; this element count cannot exceed maxsize. The parameter elsize is the
sizeof() each of the array’s elements, and elproc is an XDR filter that translates between the array
elements’ C form, and their external representation. This routine returns one if it succeeds, zero other-
wise.

xdr_bool()

xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between booleans (C integers) and their external representations. When
encoding data, this filter produces values of either one or zero. This routine returns one if it succeeds,
zero otherwise.

xdr_bytes()

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external representations. The
parameter sp is the address of the string pointer. The length of the string is located at address sizep;
strings cannot be longer than maxsize. This routine returns one if it succeeds, zero otherwise.

xdr_destroy()

void
xdr_destroy(xdrs)

XDR *xdrs;

A macro that invokes the destroy routine associated with the XDR stream, xdrs. Destruction usually
involves freeing private data structures associated with the stream. Using xdrs after invoking
xdr_destroy() is undefined.

Sun Microsystems Release 2.0

XDR Protocol Spec Page 33

xdr_double()

xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

A filter primitive that translates between C double precision numbers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_enum()

xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

A filter primitive that translates between C enums (actually integers) and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_float()

xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

A filter primitive that translates between C floats and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_getpos()

u_int
xdr_getpos(xdrs)

XDR *xdrs;

A macro that invokes the get-position routine associated with the XDR stream, xdrs. The routine
returns an unsigned integer, which indicates the position of the XDR byte stream. A desirable feature of
XDR streams is that simple arithmetic works with this number, although the XDR stream instances need
not guarantee this.

xdr_inline()

long *
xdr_inline(xdrs, len)

XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine returns a
pointer to a contiguous piece of the stream’s buffer; len is the byte length of the desired buffer. Note
that the pointer is cast to long *. Warning: xdr_inline() may return 0 (NULL) if it cannot allo-
cate a contiguous piece of a buffer. Therefore the behavior may vary among stream instances; it exists for
the sake of efficiency.

Sun Microsystems Release 2.0

Page 34 XDR Protocol Spec

xdr_int()

xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between C integers and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_long()

xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

A filter primitive that translates between C long integers and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_opaque()

xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

A filter primitive that translates between fixed size opaque data and its external representation. The
parameter cp is the address of the opaque object, and cnt is its size in bytes. This routine returns one if
it succeeds, zero otherwise.

xdr_reference()

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is the address of the
pointer; size is the sizeof() the structure that *pp points to; and proc is an XDR procedure that
filters the structure between its C form and its external representation. This routine returns one if it
succeeds, zero otherwise.

xdr_setpos()

xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

Sun Microsystems Release 2.0

XDR Protocol Spec Page 35

A macro that invokes the set position routine associated with the XDR stream xdrs. The parameter pos
is a position value obtained from xdr_getpos(). This routine returns one if the XDR stream could be
repositioned, and zero otherwise. Warning: it is difficult to reposition some types of XDR streams, so
this routine may fail with one type of stream and succeed with another.

xdr_short()

xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

A filter primitive that translates between C short integers and their external representations. This rou-
tine returns one if it succeeds, zero otherwise.

xdr_string()

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

A filter primitive that translates between C strings and their corresponding external representations.
Strings cannot cannot be longer than maxsize. Note that sp is the address of the string’s pointer. This
routine returns one if it succeeds, zero otherwise.

xdr_u_int()

xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

A filter primitive that translates between C unsigned integers and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr_u_long()

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_u_short()

xdr_u_short(xdrs, usp)
XDR *xdrs;
unsigned short *usp;

A filter primitive that translates between C unsigned short integers and their external representa-
tions. This routine returns one if it succeeds, zero otherwise.

Sun Microsystems Release 2.0

Page 36 XDR Protocol Spec

xdr_union()

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

A filter primitive that translates between a discriminated C union and its corresponding external
representation. The parameter dscmp is the address of the union’s discriminant, while unp in the
address of the union. This routine returns one if it succeeds, zero otherwise.

xdr_void()

xdr_void()

This routine always returns one. It may be passed to RPC routines that require a function parameter,
where nothing is to be done.

xdr_wrapstring()

xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

A primitive that calls xdr_string(xdrs,sp,MAXUNSIGNED); where MAXUNSIGNED is the
maximum value of an unsigned integer. This is handy because the RPC package passes only two parame-
ters XDR routines, whereas xdr_string(), one of the most frequently used primitives, requires three
parameters. This routine returns one if it succeeds, zero otherwise.

xdrmem_create()

void
xdrmem_create(xdrs, addr, size, op)

XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

Sun Microsystems Release 2.0

XDR Protocol Spec Page 37

This routine initializes the XDR stream object pointed to by xdrs. The stream’s data is written to, or
read from, a chunk of memory at location addr whose length is no more than size bytes long. The op
determines the direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

xdrrec_create()

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)

XDR *xdrs;
u_int sendsize, recvsize;
char *handle;
int (*readit)(), (*writeit)();

This routine initializes the XDR stream object pointed to by xdrs. The stream’s data is written to a
buffer of size sendsize; a value of zero indicates the system should use a suitable default. The
stream’s data is read from a buffer of size recvsize; it too can be set to a suitable default by passing a
zero value. When a stream’s output buffer is full, writeit() is called. Similarly, when a stream’s
input buffer is empty, readit() is called. The behavior of these two routines is similar to the UNIX
system calls read and write, except that handle is passed to the former routines as the first parame-
ter. Note that the XDR stream’s op field must be set by the caller. Warning: this XDR stream imple-
ments an intermediate record stream. Therefore there are additional bytes in the stream to provide record
boundary information.

xdrrec_endofrecord()

xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

This routine can be invoked only on streams created by xdrrec_create(). The data in the output
buffer is marked as a completed record, and the output buffer is optionally written out if sendnow is
non-zero. This routine returns one if it succeeds, zero otherwise.

xdrrec_eof()

xdrrec_eof(xdrs)
XDR *xdrs;
int empty;

This routine can be invoked only on streams created by xdrrec_create(). After consuming the rest
of the current record in the stream, this routine returns one if the stream has no more input, zero other-
wise.

xdrrec_skiprecord()

xdrrec_skiprecord(xdrs)
XDR *xdrs;

This routine can be invoked only on streams created by xdrrec_create(). It tells the XDR imple-
mentation that the rest of the current record in the stream’s input buffer should be discarded. This routine
returns one if it succeeds, zero otherwise.

Sun Microsystems Release 2.0

Page 38 XDR Protocol Spec

xdrstdio_create()

void
xdrstdio_create(xdrs, file, op)

XDR *xdrs;
FILE *file;
enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The XDR stream data is written to,
or read from, the Standard I/O stream file. The parameter op determines the direction of the XDR
stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE). Warning: the destroy routine associ-
ated with such XDR streams calls fflush() on the file stream, but never fclose().

Sun Microsystems Release 2.0

