
Remote Procedure Call

Programming Guide

Sun Microsystems Release 2.0

Remote Procedure Call

Programming Guide

1. Introduction

This document is intended for programmers who wish to write network applications using remote pro-
cedure calls (explained below), thus avoiding low-level system primitives based on sockets. The reader
must be familiar with the C programming language, and should have a working knowledge of network
theory.

Programs that communicate over a network need a paradigm for communication. A low-level mechan-
ism might send a signal on the arrival of incoming packets, causing a network signal handler to execute.
A high-level mechanism would be the Ada rendezvous. The method used at Sun is the Remote Pro-
cedure Call (RPC) paradigm, in which a client communicates with a server. In this process, the client
first calls a procedure to send a data packet to the server. When the packet arrives, the server calls a
dispatch routine, performs whatever service is requested, sends back the reply, and the procedure call
returns to the client.

The RPC interface is divided into three layers. The highest layer is totally transparent to the programmer.
To illustrate, at this level a program can contain a call to rnusers(), which returns the number of users
on a remote machine. You don’t have to be aware that RPC is being used, since you simply make the call
in a program, just as you would call malloc().

At the middle layer, the routines registerrpc() and callrpc() are used to make RPC calls:
registerrpc() obtains a unique system-wide number, while callrpc() executes a remote pro-
cedure call. The rnusers() call is implemented using these two routines The middle-layer routines are
designed for most common applications, and shield the user from knowing about sockets.

The lowest layer is used for more sophisticated applications, which may want to alter the defaults of the
routines. At this layer, you can explicitly manipulate sockets used for transmitting RPC messages. This
level should be avoided if possible.

Section 2 of this manual illustrates use of the highest two layers while Section 3 presents the low-level
interface. Section 4 of the manual discusses miscellaneous topics. The final section summarizes all the
entry points into the RPC system.

Although this document only discusses the interface to C, remote procedure calls can be made from any
language. Even though this document discusses RPC when it is used to communicate between processes
on different machines, it works just as well for communication between different processes on the same
machine.

There is a diagram of the RPC paradigm on the next page.

Sun Microsystems Release 2.0

Page 2 RPC Programming

client
program

��
�
�
�
�
� callrpc()

function
��������������������

...

��������������

execute
request

��
�
�
�
�
� call

service
��������������������

service
executes

��
�
�
�
�
�return

answer
��������������������

request
completed

��
�
�
�
�
���������������return

reply
��������������������

program
continues

��
�
�
�
�
�

service
daemon

Machine B

Machine A

Figure 1: Network Communication with the Remote Procedure Call

Sun Microsystems Release 2.0

RPC Programming Page 3

2. Introductory Examples

2.1. Highest Layer

Imagine you’re writing a program that needs to know how many users are logged into a remote machine.
You can do this by calling the library routine rnusers(), as illustrated below:

#include <stdio.h>

main(argc, argv)
int argc;
char **argv;

{
unsigned num;

if (argc < 2) {
fprintf(stderr, "usage: rnusers hostname\n");
exit(1);

}
if ((num = rnusers(argv[1])) < 0) {

fprintf(stderr, "error: rnusers\n");
exit(-1);

}
printf("%d users on %s\n", num, argv[1]);
exit(0);

}

RPC library routines such as rnusers() are included in the C library libc.a. Thus, the program
above could be compiled with

% cc program.c

Some other library routines are rstat() to gather remote performance statistics, and ypmatch() to
glean information from the yellow pages (YP). The YP library routines are documented on the manual
page ypclnt (3N).

Sun Microsystems Release 2.0

Page 4 RPC Programming

2.2. Intermediate Layer

The simplest interface, which explicitly makes RPC calls, uses the functions callrpc() and
registerrpc(). Using this method, another way to get the number of remote users is:

#include <stdio.h>
#include <rpcsvc/rusers.h>

main(argc, argv)
int argc;
char **argv;

{
unsigned long nusers;

if (argc < 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit(-1);

}
if (callrpc(argv[1], RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,

xdr_void, 0, xdr_u_long, &nusers) != 0) {
fprintf(stderr, "error: callrpc\n");
exit(1);

}
printf("number of users on %s is %d\n", argv[1], nusers);
exit(0);

}

A program number, version number, and procedure number defines each RPC procedure. The program
number defines a group of related remote procedures, each of which has a different procedure number.
Each program also has a version number, so when a minor change is made to a remote service (adding a
new procedure, for example), a new program number doesn’t have to be assigned. When you want to call
a procedure to find the number of remote users, you look up the appropriate program, version and pro-
cedure numbers in a manual, similar to when you look up the name of memory allocator when you want
to allocate memory.

The simplest routine in the RPC library used to make remote procedure calls is callrpc(). It has eight
parameters. The first is the name of the remote machine. The next three parameters are the program, ver-
sion, and procedure numbers. The following two parameters define the argument of the RPC call, and the
final two parameters are for the return value of the call. If it completes successfully, callrpc() returns
zero, but nonzero otherwise. The exact meaning of the return codes is found in <rpc/clnt.h>, and is
in fact an enum clnt_stat cast into an integer.

Since data types may be represented differently on different machines, callrpc() needs both the type
of the RPC argument, as well as a pointer to the argument itself (and similarly for the result). For
RUSERSPROC_NUM, the return value is an unsigned long, so callrpc() has xdr_u_long as
its first return parameter, which says that the result is of type unsigned long, and &nusers as its
second return parameter, which is a pointer to where the long result will be placed. Since
RUSERSPROC_NUM takes no argument, the argument parameter of callrpc() is xdr_void.

Sun Microsystems Release 2.0

RPC Programming Page 5

After trying several times to deliver a message, if callrpc() gets no answer, it returns with an error
code. The delivery mechanism is UDP, which stands for User Datagram Protocol. Methods for adjusting
the number of retries or for using a different protocol require you to use the lower layer of the RPC
library, discussed later in this document. The remote server procedure corresponding to the above might
look like this:

char *
nuser(indata)

char *indata;
{

static int nusers;

/*
* code here to compute the number of users
* and place result in variable nusers
*/

return ((char *)&nusers);
}

It takes one argument, which is a pointer to the input of the remote procedure call (ignored in our exam-
ple), and it returns a pointer to the result. In the current version of C, character pointers are the generic
pointers, so both the input argument and the return value are cast to char ∗.

Normally, a server registers all of the RPC calls it plans to handle, and then goes into an infinite loop
waiting to service requests. In this example, there is only a single procedure to register, so the main body
of the server would look like this:

#include <stdio.h>
#include <rpcsvc/rusers.h>

char *nuser();

main()
{

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, nuser,
xdr_void, xdr_u_long);

svc_run(); /* never returns */
fprintf(stderr, "Error: svc_run returned!\n");
exit(1);

}

The registerrpc() routine establishes what C procedure corresponds to each RPC procedure
number. The first three parameters, RUSERPROG, RUSERSVERS, and RUSERSPROC_NUM are the
program, version, and procedure numbers of the remote procedure to be registered; nuser is the name of
the C procedure implementing it; and xdr_void and xdr_u_long are the types of the input to and
output from the procedure.

Only the UDP transport mechanism can use registerrpc(); thus, it is always safe in conjunction
with calls generated by callrpc().

Warning: the UDP transport mechanism can only deal with arguments and results less than 8K bytes in
length.

Sun Microsystems Release 2.0

Page 6 RPC Programming

2.3. Assigning Program Numbers

Program numbers are assigned in groups of 0x20000000 (536870912) according to the following chart:
��

Number Assignment��
0 - 1fffffff defined by sun

20000000 - 3fffffff defined by user
40000000 - 5fffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
a0000000 - bfffffff reserved
c0000000 - dfffffff reserved
e0000000 - ffffffff reserved���
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Sun Microsystems administers the first group of numbers, which should be identical for all Sun custo-
mers. If a customer develops an application that might be of general interest, that application should be
given an assigned number in the first range. The second group of numbers is reserved for specific custo-
mer applications. This range is intended primarily for debugging new programs. The third group is
reserved for applications that generate program numbers dynamically. The final groups are reserved for
future use, and should not be used.

The exact registration process for Sun defined numbers is yet to be established.

2.4. Passing Arbitrary Data Types

In the previous example, the RPC call passes a single unsigned long. RPC can handle arbitrary
data structures, regardless of different machines’ byte orders or structure layout conventions, by always
converting them to a network standard called eXternal Data Representation (XDR) before sending them
over the wire. The process of converting from a particular machine representation to XDR format is
called serializing , and the reverse process is called deserializing . The type field parameters of
callrpc() and registerrpc() can be a built-in procedure like xdr_u_long() in the previous
example, or a user supplied one. XDR has these built-in type routines:

xdr_int() xdr_u_int() xdr_enum()
xdr_long() xdr_u_long() xdr_bool()
xdr_short() xdr_u_short() xdr_string()

As an example of a user-defined type routine, if you wanted to send the structure

struct simple {
int a;
short b;

} simple;

then you would call callrpc as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple, &simple ...);

where xdr_simple() is written as:

Sun Microsystems Release 2.0

RPC Programming Page 7

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)
XDR *xdrsp;
struct simple *simplep;

{
if (!xdr_int(xdrsp, &simplep->a))

return (0);
if (!xdr_short(xdrsp, &simplep->b))

return (0);
return (1);

}

An XDR routine returns nonzero (true in the sense of C) if it completes successfully, and zero otherwise.
A complete description of XDR is in the XDR Protocol Specification , so this section only gives a few
examples of XDR implementation.

In addition to the built-in primitives, there are also the prefabricated building blocks:

xdr_array() xdr_bytes()
xdr_reference() xdr_union()

To send a variable array of integers, you might package them up as a structure like this

struct varintarr {
int *data;
int arrlnth;

} arr;

and make an RPC call such as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_varintarr, &arr...);

with xdr_varintarr() defined as:

xdr_varintarr(xdrsp, varintarr)
XDR *xdrsp;
struct varintarr *arrp;

{
xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, MAXLEN,

sizeof(int), xdr_int);
}

This routine takes as parameters the XDR handle, a pointer to the array, a pointer to the size of the array,
the maximum allowable array size, the size of each array element, and an XDR routine for handling each
array element.

If the size of the array is known in advance, then the following could also be used to send out an array of
length SIZE:

Sun Microsystems Release 2.0

Page 8 RPC Programming

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;
int intarr[];

{
int i;

for (i = 0; i < SIZE; i++) {
if (!xdr_int(xdrsp, &intarr[i]))

return (0);
}
return (1);

}

XDR always converts quantities to 4-byte multiples when deserializing. Thus, if either of the examples
above involved characters instead of integers, each character would occupy 32 bits. That is the reason for
the XDR routine xdr_bytes(), which is like xdr_array() except that it packs characters. It has
four parameters, the same as the first four parameters of xdr_array(). For null-terminated strings,
there is also the xdr_string() routine, which is the same as xdr_bytes() without the length
parameter. On serializing it gets the string length from strlen(), and on deserializing it creates a
null-terminated string.

Here is a final example that calls the previously written xdr_simple() as well as the built-in functions
xdr_string() and xdr_reference(), which chases pointers:

struct finalexample {
char *string;
struct simple *simplep;

} finalexample;

xdr_finalexample(xdrsp, finalp)
XDR *xdrsp;
struct finalexample *finalp;

{
int i;

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (0);

if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple);

return (0);
return (1);

}

Sun Microsystems Release 2.0

RPC Programming Page 9

3. Lower Layers of RPC

In the examples given so far, RPC takes care of many details automatically for you. In this section, we’ll
show you how you can change the defaults by using lower layers of the RPC library. It is assumed that
you are familiar with sockets and the system calls for dealing with them. If not, consult The IPC
Tutorial .

3.1. More on the Server Side

There are a number of assumptions built into registerrpc(). One is that you are using the UDP
datagram protocol. Another is that you don’t want to do anything unusual while deserializing, since the
deserialization process happens automatically before the user’s server routine is called. The server for the
nusers program shown below is written using a lower layer of the RPC package, which does not make
these assumptions.

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

int nuser();

main()
{

SVCXPRT *transp;

transp = svcudp_create(RPC_ANYSOCK);
if (transp == NULL){

fprintf(stderr, "couldn’t create an RPC server\n");
exit(1);

}
pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS, nuser,

IPPROTO_UDP)) {
fprintf(stderr, "couldn’t register RUSER service\n");
exit(1);

}
svc_run(); /* never returns */
fprintf(stderr, "should never reach this point\n");

}

Sun Microsystems Release 2.0

Page 10 RPC Programming

nuser(rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned long nusers;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
return;

case RUSERSPROC_NUM:
/*

* code here to compute the number of users
* and put in variable nusers
*/

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
return;

default:
svcerr_noproc(transp);
return;

}
}

First, the server gets a transport handle, which is used for sending out RPC messages. registerrpc()
uses svcudp_create() to get a UDP handle. If you require a reliable protocol, call
svctcp_create() instead. If the argument to svcudp_create() is RPC_ANYSOCK, the RPC
library creates a socket on which to send out RPC calls. Otherwise, svcudp_create() expects its
argument to be a valid socket number. If you specify your own socket, it can be bound or unbound. If it
is bound to a port by the user, the port numbers of svcudp_create() and clntudp_create()
(the low-level client routine) must match.

When the user specifies RPC_ANYSOCK for a socket or gives an unbound socket, the system determines
port numbers in the following way: when a server starts up, it advertises to a port mapper demon on its
local machine, which picks a port number for the RPC procedure if the socket specified to
svcudp_create() isn’t already bound. When the clntudp_create() call is made with an
unbound socket, the system queries the port mapper on the machine to which the call is being made, and
gets the appropriate port number. If the port mapper is not running or has no port corresponding to the
RPC call, the RPC call fails. Users can make RPC calls to the port mapper themselves. The appropriate
procedure numbers are in the include file <rpc/pmap_prot.h>.

After creating an SVCXPRT, the next step is to call pmap_unset() so that if the nusers server
crashed earlier, any previous trace of it is erased before restarting. More precisely, pmap_unset()
erases the entry for RUSERS from the port mapper’s tables.

Sun Microsystems Release 2.0

RPC Programming Page 11

Finally, we associate the program number for nusers with the procedure nuser(). The final argu-
ment to svc_register() is normally the protocol being used, which, in this case, is IPPROTO_UDP.
Notice that unlike registerrpc(), there are no XDR routines involved in the registration process.
Also, registration is done on the program, rather than procedure, level.

The user routine nuser() must call and dispatch the appropriate XDR routines based on the procedure
number. Note that two things are handled by nuser() that registerrpc() handles automatically.
The first is that procedure NULLPROC (currently zero) returns with no arguments. This can be used as a
simple test for detecting if a remote program is running. Second, there is a check for invalid procedure
numbers. If one is detected, svcerr_noproc() is called to handle the error.

The user service routine serializes the results and returns them to the RPC caller via
svc_sendreply(). Its first parameter is the SVCXPRT handle, the second is the XDR routine, and
the third is a pointer to the data to be returned. Not illustrated above is how a server handles an RPC pro-
gram that passes data. As an example, we can add a procedure RUSERSPROC_BOOL, which has an
argument nusers, and returns TRUE or FALSE depending on whether there are nusers logged on. It
would look like this:

case RUSERSPROC_BOOL: {
int bool;
unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);
return;

}
/*

* code to set nusers = number of users
*/

if (nuserquery == nusers)
bool = TRUE;

else
bool = FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool){
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
return;

}

The relevant routine is svc_getargs(), which takes an SVCXPRT handle, the XDR routine, and a
pointer to where the input is to be placed as arguments.

Sun Microsystems Release 2.0

Page 12 RPC Programming

3.2. Memory Allocation with XDR

XDR routines not only do input and output, they also do memory allocation. This is why the second
parameter of xdr_array() is a pointer to an array, rather than the array itself. If it is NULL, then
xdr_array() allocates space for the array and returns a pointer to it, putting the size of the array in the
third argument. As an example, consider the following XDR routine xdr_chararr1(), which deals
with a fixed array of bytes with length SIZE:

xdr_chararr1(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

{
char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

It might be called from a server like this,

char chararr[SIZE];

svc_getargs(transp, xdr_chararr1, chararr);

where chararr has already allocated space. If you want XDR to do the allocation, you would have to
rewrite this routine in the following way:

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

{
int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*

* use the result here
*/

svc_freeargs(xdrsp, xdr_chararr2, &arrptr);

Sun Microsystems Release 2.0

RPC Programming Page 13

After using the character array, it can be freed with svc_freeargs(). In the routine
xdr_finalexample() given earlier, if finalp->string was NULL in the call

svc_getargs(transp, xdr_finalexample, &finalp);

then

svc_freeargs(xdrsp, xdr_finalexample, &finalp);

frees the array allocated to hold finalp->string; otherwise, it frees nothing. The same is true for
finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing, and allocating memory.
When an XDR routine is called from callrpc(), the serializing part is used. When called from
svc_getargs(), the deserializer is used. And when called from svc_freeargs(), the memory
deallocator is used. When building simple examples like those in this section, a user doesn’t have to
worry about the three modes. The XDR reference manual has examples of more sophisticated XDR rou-
tines that determine which of the three modes they are in to function correctly.

Sun Microsystems Release 2.0

Page 14 RPC Programming

3.3. The Calling Side

When you use callrpc, you have no control over the RPC delivery mechanism or the socket used to
transport the data. To illustrate the layer of RPC that lets you adjust these parameters, consider the fol-
lowing code to call the nusers service:

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)
int argc;
char **argv;

{
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int addrlen, sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
unsigned long nusers;

if (argc < 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit(-1);

}
if ((hp = gethostbyname(argv[1])) == NULL) {

fprintf(stderr, "cannot get addr for ’%s’\n", argv[1]);
exit(-1);

}
pertry_timeout.tv_sec = 3;
pertry_timeout.tv_usec = 0;
addrlen = sizeof(struct sockaddr_in);
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;
if ((client = clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock)) == NULL) {
perror("clntudp_create");
exit(-1);

}

total_timeout.tv_sec = 20; total_timeout.tv_usec = 0; clnt_stat =
clnt_call(client, RUSERSPROC_NUM, xdr_void, 0, xdr_u_long, &nusers,
total_timeout); if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc"); exit(-1); }
clnt_destroy(client); }

The low-level version of callrpc() is clnt_call(), which takes a CLIENT pointer rather than a
host name. The parameters to clnt_call() are a CLIENT pointer, the procedure number, the XDR
routine for serializing the argument, a pointer to the argument, the XDR routine for deserializing the

Sun Microsystems Release 2.0

RPC Programming Page 15

return value, a pointer to where the return value will be placed, and the time in seconds to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. callrpc() uses UDP, thus it calls
clntudp_create() to get a CLIENT pointer. To get TCP (Transport Control Protocol), you would
use clnttcp_create().

The parameters to clntudp_create() are the server address, the length of the server address, the
program number, the version number, a timeout value (between tries), and a pointer to a socket. The final
argument to clnt_call() is the total time to wait for a response. Thus, the number of tries is the
clnt_call() timeout divided by the clntudp_create() timeout.

There is one thing to note when using the clnt_destroy() call. It deallocates any space associated
with the CLIENT handle, but it does not close the socket associated with it, which was passed as an argu-
ment to clntudp_create(). The reason is that if there are multiple client handles using the same
socket, then it is possible to close one handle without destroying the socket that other handles are using.

To make a stream connection, the call to clntudp_create() is replaced with a call to
clnttcp_create().
clnttcp_create(&server_addr, prognum, versnum, &socket, inputsize,

outputsize);

There is no timeout argument; instead, the receive and send buffer sizes must be specified. When the
clnttcp_create() call is made, a TCP connection is established. All RPC calls using that CLIENT
handle would use this connection. The server side of an RPC call using TCP has svcudp_create()
replaced by svctcp_create().

Sun Microsystems Release 2.0

Page 16 RPC Programming

4. Other RPC Features

This section discusses some other aspects of RPC that are occasionally useful.

4.1. Select on the Server Side

Suppose a process is processing RPC requests while performing some other activity. If the other activity
involves periodically updating a data structure, the process can set an alarm signal before calling
svc_run(). But if the other activity involves waiting on a a file descriptor, the svc_run() call
won’t work. The code for svc_run() is as follows:
void
svc_run()
{

int readfds;

for (;;) {
readfds = svc_fds;
switch (select(32, &readfds, NULL, NULL, NULL)) {

case -1:
if (errno == EINTR)

continue;
perror("rstat: select");
return;

case 0:
break;

default:
svc_getreq(readfds);

}
}

}

You can bypass svc_run() and call svc_getreq() yourself. All you need to know are the file
descriptors of the socket(s) associated with the programs you are waiting on. Thus you can have your
own select() that waits on both the RPC socket, and your own descriptors.

4.2. Broadcast RPC

The pmap and RPC protocols implement broadcast RPC. Here are the main differences between broad-
cast RPC and normal RPC calls:

1) Normal RPC expects one answer, whereas broadcast RPC expects many answers (one or more
answer from each responding machine).

2) Broadcast RPC can only be supported by packet-oriented (connectionless) transport protocols like
UPD/IP.

3) The implementation of broadcast RPC treats all unsuccessful responses as garbage by filtering them
out. Thus, if there is a version mismatch between the broadcaster and a remote service, the user of
broadcast RPC never knows.

4) All broadcast messages are sent to the portmap port. Thus, only services that register themselves
with their portmapper are accessible via the broadcast RPC mechanism.

Sun Microsystems Release 2.0

RPC Programming Page 17

4.2.1. Broadcast RPC Synopsis

#include <rpc/pmap_clnt.h>

enum clnt_stat clnt_stat;

clnt_stat =
clnt_broadcast(prog, vers, proc, xargs, argsp, xresults, resultsp, eachresult)
u_long prog; /* program number */
u_long vers; /* version number */
u_long proc; /* procedure number */
xdrproc_t xargs; /* xdr routine for args */
caddr_t argsp; /* pointer to args */
xdrproc_t xresults; /* xdr routine for results */
caddr_t resultsp; /* pointer to results */
bool_t (*eachresult)(); /* call with each result obtained */

The procedure eachresult() is called each time a valid result is obtained. It returns a boolean that
indicates whether or not the client wants more responses.
bool_t done;

done =
eachresult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr; /* address of machine that sent response */

If done is TRUE, then broadcasting stops and clnt_broadcast() returns successfully. Otherwise,
the routine waits for another response. The request is rebroadcast after a few seconds of waiting. If no
responses come back, the routine returns with RPC_TIMEDOUT. To interpret clnt_stat errors, feed
the error code to clnt_perrno().

4.3. Batching

The RPC architecture is designed so that clients send a call message, and wait for servers to reply that the
call succeeded. This implies that clients do not compute while servers are processing a call. This is
inefficient if the client does not want or need an acknowledgement for every message sent. It is possible
for clients to continue computing while waiting for a response, using RPC batch facilities.

RPC messages can be placed in a ‘‘pipeline’’ of calls to a desired server; this is called batching. Batching
assumes that: 1) each RPC call in the pipeline requires no response from the server, and the server does
not send a response message; and 2) the pipeline of calls is transported on a reliable byte stream transport
such as TCP/IP. Since the server does not respond to every call, the client can generate new calls in
parallel with the server executing previous calls. Furthermore, the TCP/IP implementation can buffer up
many call messages, and send them to the server in one write system call.

Sun Microsystems Release 2.0

Page 18 RPC Programming

This overlapped execution greatly decreases the interprocess communication overhead of the client and
server processes, and the total elapsed time of a series of calls.

Since the batched calls are buffered, the client should eventually do a legitimate call in order to flush the
pipeline.

A contrived example of batching follows. Assume a string rendering service (like a window system) has
two similar calls: one renders a string and returns void results, while the other renders a string and
remains silent. The service (using the TCP/IP transport) may look like:
#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>

void windowdispatch();

main()
{

SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp == NULL){

fprintf(stderr, "couldn’t create an RPC server\n");
exit(1);

}
pmap_unset(WINDOWPROG, WINDOWVERS);
if (!svc_register(transp, WINDOWPROG, WINDOWVERS, windowdispatch,

IPPROTO_TCP)) {
fprintf(stderr, "couldn’t register WINDOW service\n");
exit(1);

}
svc_run(); /* never returns */
fprintf(stderr, "should never reach this point\n");

}
void
windowdispatch(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}

Sun Microsystems Release 2.0

RPC Programming Page 19

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "couldn’t decode arguments\n");
svcerr_decode(transp); /* tell caller he screwed up */
break;

}
/*

* call here to to render the string s
*/

if (!svc_sendreply(transp, xdr_void, NULL)) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
break;

case RENDERSTRING_BATCHED:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "couldn’t decode arguments\n");
/*

* we are silent in the face of protocol errors
*/

break;
}
/*

* call here to to render the string s,
* but sends no reply!
*/

break;
default:

svcerr_noproc(transp);
return;

}
/*

* now free string allocated while decoding arguments
*/

svc_freeargs(transp, xdr_wrapstring, &s);
}

Of course the service could have one procedure that takes the string and a boolean to indicate whether or
not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC calls on a TCP-based
transport and the actual calls must have the following attributes: 1) the result’s XDR routine must be zero
(NULL), and 2) the RPC call’s timeout must be zero.

Here is an example of a client that uses batching to render a bunch of strings; the batching is flushed when
the client gets a null string:

Sun Microsystems Release 2.0

Page 20 RPC Programming

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)
int argc;
char **argv;

{
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int addrlen, sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000];
char *s = buf;

Sun Microsystems Release 2.0

RPC Programming Page 21

/*
* initial as in example 3.3
*/

if ((client = clnttcp_create(&server_addr, WINDOWPROG,
WINDOWVERS, &sock, 0, 0)) == NULL) {

perror("clnttcp_create");
exit(-1);

}
total_timeout.tv_sec = 0;
total_timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {
clnt_perror(client, "batched rpc");
exit(-1);

}
}
/*

* now flush the pipeline
*/

total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC,

xdr_void, NULL, xdr_void, NULL, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(-1);

}

clnt_destroy(client);
}

Since the server sends no message, the clients cannot be notified of any of the failures that may occur.
Therefore, clients are on their own when it comes to handling errors.

The above example was completed to render all of the (2000) lines in the file /etc/termcap . The render-
ing service did nothing but to throw the lines away. The example was run in the following four
configurations: 1) machine to itself, regular RPC; 2) machine to itself, batched RPC; 3) machine to
another, regular RPC; and 4) machine to another, batched RPC. The results are as follows: 1) 50
seconds; 2) 16 seconds; 3) 52 seconds; 4) 10 seconds. Running fscanf() on /etc/termcap only
requires six seconds. These timings show the advantage of protocols that allow for overlapped execution,
though these protocols are often hard to design.

Sun Microsystems Release 2.0

Page 22 RPC Programming

4.4. Authentication

In the examples presented so far, the caller never identified itself to the server, and the server never
required an ID from the caller. Clearly, some network services, such as a network filesystem, require
stronger security than what has been presented so far.

In reality, every RPC call is authenticated by the RPC package on the server, and similarly, the RPC
client package generates and sends authentication parameters. Just as different transports (TCP/IP or
UDP/IP) can be used when creating RPC clients and servers, different forms of authentication can be
associated with RPC clients; the default authentication type used as a default is type none .

The authentication subsystem of the RPC package is open ended. That is, numerous types of authentica-
tion are easy to support. However, this section deals only with unix type authentication, which besides
none is the only supported type.

4.4.1. The Client Side

When a caller creates a new RPC client handle as in:

clnt = clntudp_create(address, prognum, versnum, wait, sockp)

the appropriate transport instance defaults the associate authentication handle to be

clnt->cl_auth = authnone_create();

The RPC client can choose to use unix style authentication by setting clnt->cl_auth after creating
the RPC client handle:

clnt->cl_auth = authunix_create_default();

This causes each RPC call associated with clnt to carry with it the following authentication credentials
structure:
/*

* Unix style credentials.
*/

struct authunix_parms {
u_long aup_time; /* credentials creation time */
char *aup_machname; /* host name of where the client is calling */
int aup_uid; /* client’s UNIX effective uid */
int aup_gid; /* client’s current UNIX group id */
u_int aup_len; /* the element length of aup_gids array */
int *aup_gids; /* array of 4.2 groups to which user belongs */

};

These fields are set by authunix_create_default() by invoking the appropriate system calls.

Since the RPC user created this new style of authentication, he is responsible for destroying it with:

auth_destroy(clnt->cl_auth);

Sun Microsystems Release 2.0

RPC Programming Page 23

4.4.2. The Server Side

Service implementors have a harder time dealing with authentication issues since the RPC package passes
the service dispatch routine a request that has an arbitrary authentication style associated with it. Con-
sider the fields of a request handle passed to a service dispatch routine:
/*

* An RPC Service request
*/

struct svc_req {
u_long rq_prog; /* service program number */
u_long rq_vers; /* service protocol version number*/
u_long rq_proc; /* the desired procedure number*/
struct opaque_auth rq_cred; /* raw credentials from the "wire" */
caddr_t rq_clntcred; /* read only, cooked credentials */

};

The rq_cred is mostly opaque, except for one field of interest: the style of authentication credentials:
/*

* Authentication info. Mostly opaque to the programmer.
*/

struct opaque_auth {
enum_t oa_flavor; /* style of credentials */
caddr_t oa_base; /* address of more auth stuff */
u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

The RPC package guarantees the following to the service dispatch routine:

1) That the request’s rq_cred is well formed. Thus the service implementor may inspect the request’s
rq_cred.oa_flavor to determine which style of authentication the caller used. The service
implementor may also wish to inspect the other fields of rq_cred if the style is not one of the styles
supported by the RPC package.

2) That the request’s rq_clntcred field is either NULL or points to a well formed structure that
corresponds to a supported style of authentication credentials. Remember that only unix style is
currently supported, so (currently) rq_clntcred could be cast to a pointer to an
authunix_parms structure. If rq_clntcred is NULL, the service implementor may wish to
inspect the other (opaque) fileds of rq_cred in case the service knows about a new type of authen-
tication that the RPC package does not know about.

Our remote users service example can be extended so that it computes results for all users except UID 16:

Sun Microsystems Release 2.0

Page 24 RPC Programming

nuser(rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

/*
* we don’t care about authentication for the null procedure
*/

if (rqstp->rq_proc == NULLPROC) {
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
return;

}
/*

* now get the uid
*/

switch (rqstp->rq_cred.oa_flavor) {
case AUTH_UNIX:

unix_cred = (struct authunix_parms *) rqstp->rq_clntcred;
uid = unix_cred->aup_uid;
break;

case AUTH_NULL:
default:

svcerr_weakauth(transp);
return;

}
switch (rqstp->rq_proc) {
case RUSERSPROC_NUM:

Sun Microsystems Release 2.0

RPC Programming Page 25

/*
* make sure the caller is allow to call this procedure.
*/

if (uid == 16) {
svcerr_systemerr(transp);
return;

}
/*

* code here to compute the number of users
* and put in variable nusers
*/

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
return;

default:
svcerr_noproc(transp);
return;

}
}

A few things should be noted here. First, it is customary not to check the authentication parameters asso-
ciated with the NULLPROC (procedure number zero). Second, if the authentication parameter’s type is
not suitable for your service, you should call svcerr_weakauth(). And finally, the service protocol
itself should return status for access denied; in the case of our example, the protocol does not have such a
status, so we call the service primitive svcerr_systemerr() instead.

The last point underscores the relation between the RPC authentication package and the services; RPC
deals only with authentication and not with individual services’ access control. The services themselves
must implement their own access control policies and reflect these policies as return statuses in their pro-
tocols.

Sun Microsystems Release 2.0

Page 26 RPC Programming

4.5. Using Inetd

An RPC server can be started from inetd. The only difference from the usual code is that
svcudp_create() should be called as

transp = svcudp_create(0);

since inet passes a socket as file descriptor 0. Also, svc_register() should be called as

svc_register(PROGNUM, VERSNUM, service, transp, 0);

with the final flag as 0, since the program would already be registered by inetd. Remember that if you
want to exit from the server process and return control to inet, you need to explicitly exit, since
svc_run() never returns.

The format of entries in /etc/servers for RPC services is

rpc udp server program version

where server is the C code implementing the server, and program and version are the program and ver-
sion numbers of the service. The key word udp can be replaced by tcp for TCP-based RPC services.

If the same program handles multiple versions, then the version number can be a range, as in this exam-
ple:

rpc udp /usr/etc/rstatd 100001 1-2

Sun Microsystems Release 2.0

RPC Programming Page 27

5. More Examples

5.1. Versions

By convention, the first version number of program FOO is FOOVERS_ORIG and the most recent ver-
sion is FOOVERS. Suppose there is a new version of the user program that returns an unsigned
short rather than a long. If we name this version RUSERSVERS_SHORT, then a server that wants to
support both versions would do a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG, nuser,
IPPROTO_TCP)) {

fprintf(stderr, "couldn’t register RUSER service\n");
exit(1);

}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT, nuser,

IPPROTO_TCP)) {
fprintf(stderr, "couldn’t register RUSER service\n");
exit(1);

}

Sun Microsystems Release 2.0

Page 28 RPC Programming

Both versions can be handled by the same C procedure:
nuser(rqstp, tranp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned long nusers;
unsigned short nusers2

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
return;

case RUSERSPROC_NUM:
/*

* code here to compute the number of users
* and put in variable nusers
*/

nusers2 = nusers;
if (rqstp->rq_vers == RUSERSVERS_ORIG)

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

}
else

if (!svc_sendreply(transp, xdr_u_short, &nusers2) {
fprintf(stderr, "couldn’t reply to RPC call\n");
exit(1);

return;
default:

svcerr_noproc(transp);
return;

}
}

Sun Microsystems Release 2.0

RPC Programming Page 29

5.2. TCP

Here is an example that is essentially rcp. The initiator of the RPC snd() call takes its standard input
and sends it to the server rcv(), which prints it on standard output. The RPC call uses TCP. This also
illustrates an XDR procedure that behaves differently on serialization than on deserialization.
/*

* The xdr routine:
*
* on decode, read from wire, write onto fp
* on encode, read from fp, write onto wire
*/

#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)
XDR *xdrs;
FILE *fp;

{
unsigned long size;
char buf[MAXCHUNK], *p;

if (xdrs->x_op == XDR_FREE)/* nothing to free */
return 1;

while (1) {
if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread (buf, sizeof(char), MAXCHUNK, fp))
== 0 && ferror(fp)) {

fprintf(stderr, "couldn’t fread\n");
exit(1);

}
}
p = buf;
if (!xdr_bytes(xdrs, &p, &size, MAXCHUNK))

return 0;
if (size == 0)

return 1;
if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size, fp) != size) {
fprintf(stderr, "couldn’t fwrite\n");
exit(1);

}
}

}
}

Sun Microsystems Release 2.0

Page 30 RPC Programming

/*
* The sender routines
*/

#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>

main(argc, argv)
int argc;
char **argv;

{
int err;

if (argc < 2) {
fprintf(stderr, "usage: %s server-name\n", argv[0]);
exit(-1);

}
if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC_FP, RCPVERS,

xdr_rcp, stdin, xdr_void, 0) != 0)) {
clnt_perrno(err);
fprintf(stderr, " couldn’t make RPC call\n");
exit(1);

}
}

Sun Microsystems Release 2.0

RPC Programming Page 31

callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc, out)
char *host, *in, *out;
xdrproc_t inproc, outproc;

{
struct sockaddr_in server_addr;
int socket = RPC_ANYSOCK;
enum clnt_stat clnt_stat;
struct hostent *hp;
register CLIENT *client;
struct timeval total_timeout;

if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "cannot get addr for ’%s’\n", host);
exit(-1);

}
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;
if ((client = clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {
perror("rpctcp_create");
exit(-1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, procnum, inproc, in, outproc, out, total_timeout);
clnt_destroy(client)
return (int)clnt_stat;

}

Sun Microsystems Release 2.0

Page 32 RPC Programming

/*
* The receiving routines
*/

#include <stdio.h>
#include <rpc/rpc.h>

main()
{

register SVCXPRT *transp;

if ((transp = svctcp_create(RPC_ANYSOCK, 1024, 1024)) == NULL) {
fprintf("svctcp_create: error\n");
exit(1);

}
pmap_unset(RCPPROG, RCPVERS);
if (!svc_register(transp, RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP)) {

fprintf(stderr, "svc_register: error\n");
exit(1);

}
svc_run(); /* never returns */
fprintf(stderr, "svc_run should never return\n");

}

rcp_service(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch (rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0) {
fprintf(stderr, "err: rcp_service");
exit(1);

}
return;

case RCPPROC_FP:
if (!svc_getargs(transp, xdr_rcp, stdout)) {

svcerr_decode(transp);
return;

}
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "can’t reply\n");
return;

}
exit(0);

default:
svcerr_noproc(transp);
return;

}
}

Sun Microsystems Release 2.0

RPC Programming Page 33

5.3. Callback Procedures

Occasionally, it is useful to have a server become a client, and make an RPC call back the process which
is its client. An example is remote debugging, where the client is a window system program, and the
server is a debugger running on the remote machine. Most of the time, the user clicks a mouse button at
the debugging window, which converts this to a debugger command, and then makes an RPC call to the
server (where the debugger is actually running), telling it to execute that command. However, when the
debugger hits a breakpoint, the roles are reversed, and the debugger wants to make an rpc call to the win-
dow program, so that it can inform the user that a breakpoint has been reached.

In order to do an RPC callback, you need a program number to make the RPC call on. Since this will be
a dynamically generated program number, it should be in the transient range, 0x40000000 - 0x5fffffff.
The routine gettransient() returns a valid program number in the transient range, and registers it
with the portmapper. It only talks to the portmapper running on the same machine as the gettran-
sient() routine itself. The call to pmap_set() is a test and set operation, in that it indivisibly tests
whether a program number has already been registered, and if it has not, then reserves it. On return, the
sockp argument will contain a socket that can be used as the argument to an svcudp_create() or
svctcp_create() call.

Sun Microsystems Release 2.0

Page 34 RPC Programming

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>

gettransient(proto, vers, sockp)
int *sockp;

{
static int prognum = 0x40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch(proto) {
case IPPROTO_UDP:

socktype = SOCK_DGRAM;
break;

case IPPROTO_TCP:
socktype = SOCK_STREAM;
break;

default:
fprintf(stderr, "unknown protocol type\n");
return 0;

}
if (*sockp == RPC_ANYSOCK) {

if ((s = socket(AF_INET, socktype, 0)) < 0) {
perror("socket");
return (0);

}
*sockp = s;

}
else

s = *sockp;
addr.sin_addr.s_addr = 0;
addr.sin_family = AF_INET;
addr.sin_port = 0;
len = sizeof(addr);
/*

* may be already bound, so don’t check for err
*/

bind(s, &addr, len);
if (getsockname(s, &addr, &len)< 0) {

perror("getsockname");
return (0);

}
while (pmap_set(prognum++, vers, proto, addr.sin_port) == 0)

continue;
return (prognum-1);

}

Sun Microsystems Release 2.0

RPC Programming Page 35

The following pair of programs illustrate how to use the gettransient() routine. The client makes
an RPC call to the server, passing it a transient program number. Then the client waits around to receive
a callback from the server at that program number. The server registers the program EXAMPELPROG,
so that it can receive the RPC call informing it of the callback program number. Then at some random
time (on receiving an ALRM signal in this example), it sends a callback RPC call, using the program
number it received earlier.
/*

* client
*/

#include <stdio.h>
#include <rpc/rpc.h>

int callback();
char hostname[256];

main(argc, argv)
char **argv;

{
int x, ans, s;
SVCXPRT *xprt;

gethostname(hostname, sizeof(hostname));
s = RPC_ANYSOCK;
x = gettransient(IPPROTO_UDP, 1, &s);
fprintf(stderr, "client gets prognum %d\n", x);

if ((xprt = svcudp_create(s)) == NULL) {
fprintf(stderr, "rpc_server: svcudp_create\n");
exit(1);

}
(void)svc_register(xprt, x, 1, callback, 0);

ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEPROC_CALLBACK,
EXAMPLEVERS, xdr_int, &x, xdr_void, 0);

if (ans != 0) {
fprintf(stderr, "call: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

}
svc_run();
fprintf(stderr, "Error: svc_run shouldn’t have returned\n");

}

Sun Microsystems Release 2.0

Page 36 RPC Programming

callback(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch (rqstp->rq_proc) {

case 0:
if (svc_sendreply(transp, xdr_void, 0) == FALSE) {

fprintf(stderr, "err: rusersd\n");
exit(1);

}
exit(0);

case 1:
if (!svc_getargs(transp, xdr_void, 0)) {

svcerr_decode(transp);
exit(1);

}
fprintf(stderr, "client got callback\n");
if (svc_sendreply(transp, xdr_void, 0) == FALSE) {

fprintf(stderr, "err: rusersd");
exit(1);

}
}

}

Sun Microsystems Release 2.0

RPC Programming Page 37

/*
* server
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>

char *getnewprog();
char hostname[256];
int docallback();
int pnum; /*program number for callback routine */

main(argc, argv)
char **argv;

{
gethostname(hostname, sizeof(hostname));
registerrpc(EXAMPLEPROG, EXAMPLEPROC_CALLBACK, EXAMPLEVERS,

getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
alarm(10);
signal(SIGALRM, docallback);
svc_run();
fprintf(stderr, "Error: svc_run shouldn’t have returned\n");

}

char *
getnewprog(pnump)

char *pnump;
{

pnum = *(int *)pnump;
return NULL;

}

docallback()
{

int ans;

ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0, xdr_void, 0);
if (ans != 0) {

fprintf(stderr, "server: ");
clnt_perrno(ans);
fprintf(stderr, "\n");

}
}

Sun Microsystems Release 2.0

Page 38 RPC Programming

Appendix A: Synopsis of RPC Routines

auth_destroy()

void
auth_destroy(auth)

AUTH *auth;

A macro that destroys the authentication information associated with auth. Destruction usually involves
deallocation of private data structures. The use of auth is undefined after calling auth_destroy().

authnone_create()

AUTH *
authnone_create()

Creates and returns an RPC authentication handle that passes no usable authentication information with
each remote procedure call.

authunix_create()

AUTH *
authunix_create(host, uid, gid, len, aup_gids)

char *host;
int uid, gid, len, *aup_gids;

Creates and returns an RPC authentication handle that contains UNIX authentication information. The
parameter host is the name of the machine on which the information was created; uid is the user’s user
ID; gid is the user’s current group ID; len and aup_gids refer to a counted array of groups to which
the user belongs. It is easy to impersonate a user.

authunix_create_default()

AUTH *
authunix_create_default()

Calls authunix_create() with the appropriate parameters.

callrpc()

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Sun Microsystems Release 2.0

RPC Programming Page 39

Calls the remote procedure associated with prognum, versnum, and procnum on the machine, host.
The parameter in is the address of the procedure’s argument(s), and out is the address of where to place
the result(s); inproc is used to encode the procedure’s parameters, and outproc is used to decode the
procedure’s results. This routine returns zero if it succeeds, or the value of enum clnt_stat cast to
an integer if it fails. The routine clnt_perrno() is handy for translating failure statuses into mes-
sages. Warning: calling remote procedures with this routine uses UDP/IP as a transport; see
clntudp_create() for restrictions.

clnt_broadcast()

enum clnt_stat
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult)

u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;

Like callrpc(), except the call message is broadcast to all locally connected broadcast nets. Each
time it receives a response, this routine calls eachresult, whose form is

eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

where out is the same as out passed to clnt_broadcast(), except that the remote procedure’s out-
put is decoded there; addr points to the address of the machine that sent the results. If eachresult()
returns zero, clnt_broadcast() waits for more replies; otherwise it returns with appropriate status.

clnt_call()

enum clnt_stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)

CLIENT *clnt; long procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct timeval tout;

A macro that calls the remote procedure procnum associated with the client handle, clnt, which is
obtained with an RPC client creation routine such as clntudp_create. The parameter in is the
address of the procedure’s argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure’s parameters, and outproc is used to decode the procedure’s results;
tout is the time allowed for results to come back.

clnt_destroy()

clnt_destroy(clnt)
CLIENT *clnt;

A macro that destroys the client’s RPC handle. Destruction usually involves deallocation of private data
structures, including clnt itself. Use of clnt is undefined after calling clnt_destroy(). Warning:
client destruction routines do not close sockets associated with clnt; this is the responsibility of the
user.

Sun Microsystems Release 2.0

Page 40 RPC Programming

clnt_freeres()

clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

A macro that frees any data allocated by the RPC/XDR system when it decoded the results of an RPC
call. The parameter out is the address of the results, and outproc is the XDR routine describing the
results in simple primitives. This routine returns one if the results were successfully freed, and zero oth-
erwise.

clnt_geterr()

void
clnt_geterr(clnt, errp)

CLIENT *clnt;
struct rpc_err *errp;

A macro that copies the error structure out of the client handle to the structure at address errp.

clnt_pcreateerror()

void
clnt_pcreateerror(s)

char *s;

Prints a message to standard error indicating why a client RPC handle could not be created. The message
is prepended with string s and a colon.

clnt_perrno()

void
clnt_perrno(stat)

enum clnt_stat;

Prints a message to standard error corresponding to the condition indicated by stat.

clnt_perror()

clnt_perror(clnt, s)
CLIENT *clnt;
char *s;

Prints a message to standard error indicating why an RPC call failed; clnt is the handle used to do the
call. The message is prepended with string s and a colon.

Sun Microsystems Release 2.0

RPC Programming Page 41

clntraw_create()

CLIENT *
clntraw_create(prognum, versnum)

u_long prognum, versnum;

This routine creates a toy RPC client for the remote program prognum, version versnum. The tran-
sport used to pass messages to the service is actually a buffer within the process’s address space, so the
corresponding RPC server should live in the same address space; see svcraw_create(). This allows
simulation of RPC and acquisition of RPC overheads, such as round trip times, without any kernel
interference. This routine returns NULL if it fails.

clnttcp_create()

CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)

struct sockaddr_in *addr;
u_long prognum, versnum;
int *sockp;
u_int sendsz, recvsz;

This routine creates an RPC client for the remote program prognum, version versnum; the client uses
TCP/IP as a transport. The remote program is located at Internet address *addr. If addr-
>sin_port is zero, then it is set to the actual port that the remote program is listening on (the remote
portmap service is consulted for this information). The parameter *sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets *sockp. Since TCP-based RPC uses buf-
fered I/O, the user may specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of zero choose suitable defaults. This routine returns NULL if it fails.

clntudp_create()

CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)

struct sockaddr_in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

Sun Microsystems Release 2.0

Page 42 RPC Programming

This routine creates an RPC client for the remote program prognum, version versnum; the client uses
use UDP/IP as a transport. The remote program is located at Internet address *addr. If addr-
>sin_port is zero, then it is set to actual port that the remote program is listening on (the remote port-
map service is consulted for this information). The parameter *sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets *sockp. The UDP transport resends the
call message in intervals of wait time until a response is received or until the call times out. Warning:
since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this transport cannot be
used for procedures that take large arguments or return huge results.

get_myaddress()

void
get_myaddress(addr)

struct sockaddr_in *addr;

Stuffs the machine’s IP address into *addr, without consulting the library routines that deal with
/etc/hosts . The port number is always set to htons(PMAPPORT).

pmap_getmaps()

struct pmaplist *
pmap_getmaps(addr)

struct sockaddr_in *addr;

A user interface to the portmap service, which returns a list of the current RPC program-to-port mappings
on the host located at IP address *addr. This routine can return NULL. The command rpcinfo -p
uses this routine.

pmap_getport()

u_short
pmap_getport(addr, prognum, versnum, protocol)

struct sockaddr_in *addr;
u_long prognum, versnum, protocol;

A user interface to the portmap service, which returns the port number on which waits a service that sup-
ports program number prognum, version versnum, and speaks the transport protocol associated with
protocol. A return value of zero means that the mapping does not exist or that the RPC system failured to
contact the remote portmap service. In the latter case, the global variable rpc_createerr contains
the RPC status.

Sun Microsystems Release 2.0

RPC Programming Page 43

pmap_rmtcall()

enum clnt_stat
pmap_rmtcall(addr, prognum, versnum, procnum,

inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;
u_long *portp;

A user interface to the portmap service, which instructs portmap on the host at IP address *addr to
make an RPC call on your behalf to a procedure on that host. The parameter *portp will be modified to
the program’s port number if the procedure succeeds. The definitions of other parameters are discussed in
callrpc() and clnt_call(); see also clnt_broadcast().

pmap_set()

pmap_set(prognum, versnum, protocol, port)
u_long prognum, versnum, protocol;
u_short port;

A user interface to the portmap service, which establishes a mapping between the triple
[prognum,versnum,protocol] and port on the machine’s portmap service. The value of proto-
col is most likely IPPROTO_UDP or IPPROTO_TCP. This routine returns one if it succeeds, zero other-
wise.

pmap_unset()

pmap_unset(prognum, versnum)
u_long prognum, versnum;

A user interface to the portmap service, which destroys all mappings between the triple
[prognum,versnum,*] and ports on the machine’s portmap service. This routine returns one if it
succeeds, zero otherwise.

registerrpc()

registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;
char *(*procname)();
xdrproc_t inproc, outproc;

Registers procedure procname with the RPC service package. If a request arrives for program prog-
num, version versnum, and procedure procnum, procname is called with a pointer to its
parameter(s); progname should return a pointer to its static result(s); inproc is used to decode the
parameters while outproc is used to encode the results. This routine returns zero if the registration suc-
ceeded, −1 otherwise.

Sun Microsystems Release 2.0

Page 44 RPC Programming

Warning: remote procedures registered in this form are accessed using the UDP/IP transport; see
svcudp_create() for restrictions.

rpc_createerr

struct rpc_createerr rpc_createerr;

A global variable whose value is set by any RPC client creation routine that does not succeed. Use the
routine clnt_pcreateerror() to print the reason why.

svc_destroy()

svc_destroy(xprt)
SVCXPRT *xprt;

A macro that destroys the RPC service transport handle, xprt. Destruction usually involves deallocation
of private data structures, including xprt itself. Use of xprt is undefined after calling this routine.

svc_fds

int svc_fds;

A global variable reflecting the RPC service side’s read file descriptor bit mask; it is suitable as a parame-
ter to the select system call. This is only of interest if a service implementor does not call
svc_run(), but rather does his own asynchronous event processing. This variable is read-only (do not
pass its address to select!), yet it may change after calls to svc_getreq() or any creation routines.

svc_freeargs()

svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that frees any data allocated by the RPC/XDR system when it decoded the arguments to a ser-
vice procedure using svc_getargs(). This routine returns one if the results were successfully freed,
and zero otherwise.

svc_getargs()

svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that decodes the arguments of an RPC request associated with the RPC service transport handle,
xprt. The parameter in is the address where the arguments will be placed; inproc is the XDR routine
used to decode the arguments. This routine returns one if decoding succeeds, and zero otherwise.

Sun Microsystems Release 2.0

RPC Programming Page 45

svc_getcaller()

struct sockaddr_in
svc_getcaller(xprt)

SVCXPRT *xprt;

The approved way of getting the network address of the caller of a procedure associated with the RPC
service transport handle, xprt.

svc_getreq()

svc_getreq(rdfds)
int rdfds;

This routine is only of interest if a service implementor does not call svc_run(), but instead imple-
ments custom asynchronous event processing. It is called when the select system call has determined
that an RPC request has arrived on some RPC socket(s); rdfds is the resultant read file descriptor bit
mask. The routine returns when all sockets associated with the value of rdfds have been serviced.

svc_register()

svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch)();
u_long protocol;

Associates prognum and versnum with the service dispatch procedure, dispatch. If protocol is
non-zero, then a mapping of the triple [prognum,versnum,protocol] to xprt->xp_port is
also established with the local portmap service (generally protocol is zero, IPPROTO_UDP or
IPPROTO_TCP). The procedure dispatch() has the following form:

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_register routine returns one if it succeeds, and zero otherwise.

svc_run()

svc_run()

This routine never returns. It waits for RPC requests to arrive and calls the appropriate service procedure
(using svc_getreq) when one arrives. This procedure is usually waiting for a select system call to
return.

Sun Microsystems Release 2.0

Page 46 RPC Programming

svc_sendreply()

svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Called by an RPC service’s dispatch routine to send the results of a remote procedure call. The parameter
xprt is the caller’s associated transport handle; outproc is the XDR routine which is used to encode
the results; and out is the address of the results. This routine returns one if it succeeds, zero otherwise.

svc_unregister()

void
svc_unregister(prognum, versnum)

u_long prognum, versnum;

Removes all mapping of the double [prognum,versnum] to dispatch routines, and of the triple
[prognum,versnum,*] to port number.

svcerr_auth()

void
svcerr_auth(xprt, why)

SVCXPRT *xprt;
enum auth_stat why;

Called by a service dispatch routine that refuses to perform a remote procedure call due to an authentica-
tion error.

svcerr_decode()

void
svcerr_decode(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that can’t successfully decode its parameters. See also
svc_getargs().

svcerr_noproc()

void
svcerr_noproc(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that doesn’t implement the desired procedure number the caller
request.

Sun Microsystems Release 2.0

RPC Programming Page 47

svcerr_noprog()

void
svcerr_noprog(xprt)

SVCXPRT *xprt;

Called when the desired program is not registered with the RPC package. Service implementors usually
don’t need this routine.

svcerr_progvers()

void
svcerr_progvers(xprt)

SVCXPRT *xprt;

Called when the desired version of a program is not registered with the RPC package. Service implemen-
tors usually don’t need this routine.

svcerr_systemerr()

void
svcerr_systemerr(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine when it detects a system error not covered by any particular protocol.
For example, if a service can no longer allocate storage, it may call this routine.

svcerr_weakauth()

void
svcerr_weakauth(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that refuses to perform a remote procedure call due to insufficient
(but correct) authentication parameters. The routine calls svcerr_auth(xprt,AUTH_TOOWEAK).

svcraw_create()

SVCXPRT *
svcraw_create()

This routine creates a toy RPC service transport, to which it returns a pointer. The transport is really a
buffer within the process’s address space, so the corresponding RPC client should live in the same
address space; see clntraw_create(). This routine allows simulation of RPC and acquisition of
RPC overheads (such as round trip times), without any kernel interference. This routine returns NULL if
it fails.

Sun Microsystems Release 2.0

Page 48 RPC Programming

svctcp_create()

SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)

int sock;
u_int send_buf_size, recv_buf_size;

This routine creates a TCP/IP-based RPC service transport, to which it returns a pointer. The transport is
associated with the socket sock, which may be RPC_ANYSOCK, in which case a new socket is created.
If the socket is not bound to a local TCP port, then this routine binds it to an arbitrary port. Upon comple-
tion, xprt->xp_sock is the transport’s socket number, and xprt->xp_port is the transport’s port
number. This routine returns NULL if it fails. Since TCP-based RPC uses buffered I/O, users may
specify the size of the send and receive buffers; values of zero choose suitable defaults.

svcudp_create()

SVCXPRT *
svcudp_create(sock)

int sock;

This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The transport is
associated with the socket sock, which may be RPC_ANYSOCK, in which case a new socket is created.
If the socket is not bound to a local UDP port, then this routine binds it to an arbitrary port. Upon comple-
tion, xprt->xp_sock is the transport’s socket number, and xprt->xp_port is the transport’s port
number. This routine returns NULL if it fails. Warning: since UDP-based RPC messages can only hold
up to 8 Kbytes of encoded data, this transport cannot be used for procedures that take large arguments or
return huge results.

xdr_accepted_reply()

xdr_accepted_reply(xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

Used for describing RPC messages, externally. This routine is useful for users who wish to generate
RPC-style messages without using the RPC package.

xdr_array()

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

Sun Microsystems Release 2.0

RPC Programming Page 49

A filter primitive that translates between arrays and their corresponding external representations. The
parameter arrp is the address of the pointer to the array, while sizep is the address of the element
count of the array; this element count cannot exceed maxsize. The parameter elsize is the
sizeof() each of the array’s elements, and elproc is an XDR filter that translates between the array
elements’ C form, and their external representation. This routine returns one if it succeeds, zero other-
wise.

xdr_authunix_parms()

xdr_authunix_parms(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

Used for describing UNIX credentials, externally. This routine is useful for users who wish to generate
these credentials without using the RPC authentication package.

xdr_bool()

xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between booleans (C integers) and their external representations. When
encoding data, this filter produces values of either one or zero. This routine returns one if it succeeds,
zero otherwise.

xdr_bytes()

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external representations. The
parameter sp is the address of the string pointer. The length of the string is located at address sizep;
strings cannot be longer than maxsize. This routine returns one if it succeeds, zero otherwise.

xdr_callhdr()

void
xdr_callhdr(xdrs, chdr)

XDR *xdrs;
struct rpc_msg *chdr;

Used for describing RPC messages, externally. This routine is useful for users who wish to generate
RPC-style messages without using the RPC package.

Sun Microsystems Release 2.0

Page 50 RPC Programming

xdr_callmsg()

xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Used for describing RPC messages, externally. This routine is useful for users who wish to generate
RPC-style messages without using the RPC package.

xdr_double()

xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

A filter primitive that translates between C double precision numbers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_enum()

xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

A filter primitive that translates between C enums (actually integers) and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_float()

xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

A filter primitive that translates between C floats and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_inline()

long *
xdr_inline(xdrs, len)

XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine returns a
pointer to a contiguous piece of the stream’s buffer; len is the byte length of the desired buffer. Note
that pointer is cast to long *. Warning: xdr_inline() may return 0 (NULL) if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among stream instances; it exists for the
sake of efficiency.

Sun Microsystems Release 2.0

RPC Programming Page 51

xdr_int()

xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between C integers and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_long()

xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

A filter primitive that translates between C long integers and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_opaque()

xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

A filter primitive that translates between fixed size opaque data and its external representation. The
parameter cp is the address of the opaque object, and cnt is its size in bytes. This routine returns one if
it succeeds, zero otherwise.

xdr_opaque_auth()

xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

Used for describing RPC messages, externally. This routine is useful for users who wish to generate
RPC-style messages without using the RPC package.

xdr_pmap()

xdr_pmap(xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Used for describing parameters to various portmap procedures, externally. This routine is useful for
users who wish to generate these parameters without using the pmap interface.

Sun Microsystems Release 2.0

Page 52 RPC Programming

xdr_pmaplist()

xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Used for describing a list of port mappings, externally. This routine is useful for users who wish to gen-
erate these parameters without using the pmap interface.

xdr_reference()

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is the address of the
pointer; size is the sizeof() the structure that *pp points to; and proc is an XDR procedure that
filters the structure between its C form and its external representation. This routine returns one if it
succeeds, zero otherwise.

xdr_rejected_reply()

xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

Used for describing RPC messages, externally. This routine is useful for users who wish to generate
RPC-style messages without using the RPC package.

xdr_replymsg()

xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Used for describing RPC messages, externally. This routine is useful for users who wish to generate RPC
style messages without using the RPC package.

xdr_short()

xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

A filter primitive that translates between C short integers and their external representations. This rou-
tine returns one if it succeeds, zero otherwise.

Sun Microsystems Release 2.0

RPC Programming Page 53

xdr_string()

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

A filter primitive that translates between C strings and their corresponding external representations.
Strings cannot cannot be longer than maxsize. Note that sp is the address of the string’s pointer. This
routine returns one if it succeeds, zero otherwise.

xdr_u_int()

xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

A filter primitive that translates between C unsigned integers and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr_u_long()

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_u_short()

xdr_u_short(xdrs, usp)
XDR *xdrs;
unsigned short *usp;

A filter primitive that translates between C unsigned short integers and their external representa-
tions. This routine returns one if it succeeds, zero otherwise.

xdr_union()

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

A filter primitive that translates between a discriminated C union and its corresponding external
representation. The parameter dscmp is the address of the union’s discriminant, while unp in the
address of the union. This routine returns one if it succeeds, zero otherwise.

Sun Microsystems Release 2.0

Page 54 RPC Programming

xdr_void()

xdr_void()

This routine always returns one.

xdr_wrapstring()

xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

A primitive that calls xdr_string(xdrs,sp,MAXUNSIGNED); where MAXUNSIGNED is the
maximum value of an unsigned integer. This is handy because the RPC package passes only two parame-
ters XDR routines, whereas xdr_string(), one of the most frequently used primitives, requires three
parameters. This routine returns one if it succeeds, zero otherwise.

xprt_register()

void
xprt_register(xprt)

SVCXPRT *xprt;

After RPC service transport handles are created, they should register themselves with the RPC service
package. This routine modifies the global variable svc_fds. Service implementors usually don’t need
this routine.

xprt_unregister()

void
xprt_unregister(xprt)

SVCXPRT *xprt;

Before an RPC service transport handle is destroyed, it should unregister itself with the RPC service
package. This routine modifies the global variable svc_fds. Service implementors usually don’t need
this routine.

Sun Microsystems Release 2.0

