
Summary
While it may have earned widespread use, NFS still has room for improvement. With the release
of Solaris 2.5, Sun will deliver a new version of NFS and will let NFS run over TCP. Customers
can expect enhanced network performance throughout, and new features that improve flexibility,
usability, performance, security, and robustness. Let's take a look at the key NFS-related
features and how they'll impact your site.

By Brian Wong

The advent of Solaris 2.5 promises many enhancements to Sun's flagship OS, including an improved
implementation of the NFS protocol. Two items in the new release will have significant impact on
networks: NFS version 3, and the ability to run NFS (either version) over connection-oriented
protocols such as TCP. Of these two, the most significant new addition is the NFS version 3 protocol
offering.

NFS V3 is related to the now-universal version 2 protocol, but some significant changes enhance its
performance. These changes include:

A safe asynchronous-write protocol that accelerates NFS writes
Finer access control
Less overhead
Bigger file-transfer sizes
Support of NFS over TCP

Still safe, but faster
One of the least-endearing features of NFS version 2 is the very-safe-but-very-slow nature of its fully
synchronous write operations. The completely stateless nature of the version 2 protocol requires that
the server commit write operations to stable storage before acknowledging them. Since most Unix
users are accustomed to lazy write-behind buffering for local disk writes, NFS V2 writes seem
sluggish.

Several products accelerate writes, including Legato's PrestoServe and its Sun relative, a battery-
backed SIMM. Various programmatic approaches have also appeared, including write clustering,
which is found in Solaris 2.x and Interstream's EFS.

Although effective, these workarounds address the symptom rather than the cause of NFS V2's slow
performance. (Some vendors even offer unsafe asynchronous writes in an attempt to boost throughput.)
The new protocol allows for clustered asynchronous writes combined with a safe two-phase commit
protocol that permits clients to stream to the server at far higher rates than possible under the older
protocol.

Fine-grained access control
Another important extension to the protocol is the provision for much finer control of file and directory
access. The version 2 protocol does not provide clients with sufficient information to accurately
determine the actual permissions available on a file system object. (The best known example is the

NFS gets revved in Solaris 2.5

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


mapping from "root" to "nobody".) Although this has served well for many years, users are beginning
to require finer-grained access control.

The new protocol provides a mechanism for clients to submit credentials and request access checks
that exceed the limited semantic definitions of the older protocol. This permits the client to ask the
server to verify the available permissions. Access control lists (ACLs) are not explicitly defined in the
NFS protocol, so Solaris 2.5 implements a private protocol that lets clients obtain and edit ACLs on
remote file systems. When combined with the NFS version 3 access mechanism, this permits access to
be controlled at an extremely fine level. (A private protocol is required because there is as yet no
industry-standard definition for ACLs. The private protocol will be replaced when such a standard is
defined.)

Less overhead
A number of other improvements were made to increase over-the-wire efficiency. For example, one of
the most frequently used version 2 operations is getattr, which obtains file attributes (such as name,
permission mask, last modified time, etc.) for a referenced file. Studies of existing NFS sites reveal
that virtually all getattr operations are proceeded by an acknowledgment for the previous operation,
and that the overhead of processing two discrete operations is substantial. Accordingly, the V3 protocol
has been modified to permit file attributes to be returned "piggybacked" on the acknowledgments for
other operations. This improves the overall efficiency of the protocol stack by eliminating extra packets
and extra NFS operations.

Larger file-transfer sizes
In a similar vein, the transfer size maximum is raised from 8 kilobytes in version 3 to as much as 4
gigabytes. This permits clients and servers to exchange data in much larger units for greater efficiency.
The Solaris 2.5 implementation negotiates for block sizes as large as 64 kilobytes, resulting in point-to-
point throughput as high as 5.4 megabytes/second on current SuperSPARC-based platforms (which
slightly outpace even hyperSPARC-based computers on this code). The 64-kilobyte size is a result of
the use of standard TCP and UDP transport protocols, which have a 64-kilobyte maximum window
size. A future release of Solaris will implement RFC 1323, which provides for larger windows when
operating over TCP.

Sixty-four-bit file offsets in NFS 3
let suitably-equipped clients and servers

manipulate files of essentially arbitrary size.

Another major NFS improvement is the transition from 32-bit file offsets to 64-bit file offsets in the
over-the-wire packets. This permits suitably-equipped clients and servers to manipulate files of
essentially arbitrary size. There is no practical limit on the size of a filesystem that can be manipulated
with either protocol. The distinction between the protocol and the implementation is crucial in this
area: The version 3 protocol uses 64-bit offsets. (Note that this is entirely possible on existing 32-bit
hardware.) The Solaris 2.5 implementation at present does not make use of this ability since the
underlying Unix filesystem and Solaris virtual memory systems are not fully 64-bit clean, but a future
release of Solaris will offer large local files. Solaris will support large files over NFS at that time.

NFS over TCP
The other major innovation in the Solaris 2.5 NFS implementation is the ability to run the NFS
application-level protocol over TCP. Because TCP is a reliable transport protocol with congestion
control and built-in error handling, it provides a simpler mechanism for the NFS protocol suite than the
more traditional UDP transport. This is a minor enhancement in the common LAN environment, but

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


for those wishing to implement wide-area file sharing, NFS over TCP makes for smoother
transmissions -- even when operating over relatively noisy and error-prone communication lines.

As with the NFS V3 and V2 protocol selection, the use of TCP or UDP transport is easily selected at
mount time. Either transport is available for either NFS protocol; the default is to run NFS version 3
over TCP. This is the selection made by Solaris 2.5 clients, but Solaris 2.5 servers will respond
immediately to any of these combinations in order to support heterogeneous environments.

Backward compatibility
Although the NFS version 3 protocol behaves very much like its predecessor from a user's perspective,
the substantial nature of the changes make version 3 a completely different protocol. Version 2 clients
cannot communicate with version 3 servers, and vice versa. Solaris 2.5 avoids this problem by offering
simultaneous V2 and V3 servers and clients; V3 is the default protocol requested by Solaris 2.5 clients,
but if no V3 server responds to the mount request, the clients will fall back and attempt V2. The servers
likewise offer both V2 and V3 services, making full interoperability possible. (The nfsstat -m
command can be used on the client to discover what protocols are in use.)

One of the consequences of the divergence of the version 2 and version 3 protocols is that the industry-
standard SPEC_sfs.097 NFS file server benchmark (popularly known as LADDIS) must be
substantially revised to account for the peculiarities of the new protocol. The SPEC committee is
working to revise the benchmark to provide metrics for the new protocol.

It's worth it
The Solaris 2.5 NFS implementation provides the biggest enhancement to NFS functionality since
Solaris 1. Improvements have been made in the areas of performance, efficiency, flexibility, security --
and, when combined with Solstice HA-NFS, improved reliability and availability.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

