
POINT OF CONTACT

Networking technologies for tying together multivendor hardware are ma-

turing. Now it’s time to turn to the challenge of integrating different types

of software.

By Robert A. Gingell

A growing number of computing environments are being fashioned today out of networks of heterogeneous
systems. The variety that characterizes these networks owes to several factors, among them the needs to:

* preserve inv estments in computing resources as new technology is assimilated.

* maintain economic flexibility by avoiding encumbering relationships with isolated vendors.

* share resources where value is a function of common access (such as corporate databases).

* share resources which are prohibitively expensive to duplicate (such as supercomputers).

* share resources which require special environments (such as noisy line printers).

* share human resource services (operators and system administrators, for example).

* distribute and dedicate inexpensive (or performance-critical) resources to specific, specialized functions. File
servers, ‘‘user-interface servers’’ (graphical workstations), and data monitoring and collecting equipment are
examples.

* provide an integrated environment in which the functions of each resource can be harnessed directly both by
users and other resources.

As the first major portable operating system, UNIX actually helped to establish many of these requirements.
Indeed, it might be said that many of the seeds for heterogeneous networks were sewn by UNIX users, who for years
have chosen freely from among a variety of hardware vendors.

An analogy can be drawn between the emerging networked computing environments and component stereo
systems. In the instance of stereos, a task (making music) is distributed over a variety of components, each dedi-
cated to performing some part of the overall job. Systems typically are built over time through several purchases.
As a result, they generally consist of components from several different vendors (given that most consumers try to
take advantage of the best available price/performance deals). As a whole, then, a stereo system can be seen as an
ev olving compromise between desired performance, the state of technology at various points in time, and the bud-
getary constraints of the user.

Component stereo gear would not even be possible today had vendors not agreed on interconnection stan-
dards. Comparable efforts have been made in the computing arena, but the task has been complicated by the exis-
tence of differing standards for various networking facets (for example, the Ethernet and Token Ring physical

medium standards, and the TCP/IP, DECnet, ISO, and X.25 transport control standards).

Compounding the computer interconnection challenge is the enormous variety of network applications. With
stereo systems, there is only one application to worry about--the making of music. Computer vendors, though, must
shape standards that can accommodate and evolve with innumerable applications. It is here that the obstacles lie to
creating an integrated, heterogeneous, ‘‘component computing’’ environment.

DISTRIBUTED OPERATING SYSTEMS

The two major approaches used to integrate networks of computer systems can be classified as distributed op-

erating systems and network services. In effect, distributed operating systems achieve a high degree of integration
by transforming a network of components into what amounts to a loosely-coupled multiprocessor. Examples in-
clude Apollo’s DOMAIN [5], UCLA’s distributed UNIX (known as LOCUS) [6], and DEC’s VAX/VMS on VAX-
clusters. By using the same software architecture on every hardware system in a network, these operating systems

POINT OF CONTACT 14 September 2025

-2-

essentially limit the problems of heterogeneity to hardware. In some cases, even hardware heterogeneity can be lim-
ited to a degree by incorporating appropriate assumptions about the environment.

Many org anizations want to have an integrated network to create a more productive computing environment
out of previously autonomous installations [4]. These users already have an extensive hardware and software invest-
ment in systems ranging from PC’s to mainframes. The imposition of a single operating system, even if it could
support a wide range of hardware, is unacceptable for these users because it invalidates their current software invest-
ments. Further, this approach constrains the evolution of any networked computing environment to match the pace
of their single software base. Users need a more general and flexible means for integrating heterogeneous systems.

NETWORK SERVICES

By contrast, the network services approach described the facilities available to applications in a network in the
form of standardized, system-independent interfaces called services. This approach to providing resource sharing is
the one employed in the ARPAnet and the networking applications supplied with 4.2BSD. Incorporated in the
Berkeley applications set are utilities for handling standard ARPAnet protocols as well as some standard UNIX fa-
cilities customized for accessing other UNIX systems in a network.

A number of these tools are limited with respect to accommodating heterogeneity, though. An example can be
found in the C Advisor column in the May 1985 issue of UNIX REVIEW. The sample code in that column consists
of a pair of programs intended to exchange binary data through a pipe. As the column illustrates, the data is inter-
preted correctly when the pipeline runs on a single machine (say, a VAX):

vax% writer | reader
0 1 2 3 4 5 6 7
vax%

But when the pipeline must be partitioned across machines of different architectures (a Sun and a VAX, for in-
stance), surprising results can be produced:

sun% writer | rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296 117440512
sun%

This discrepency results from the byte-order differences between the two architectures. Distressingly, lint will not
complain about this problem since it tests for the portability of programs rather than the data they produce or con-
sume. Such problems are also beyond the scope of the 4.2BSD kernel-supplied communications facilities used by
rsh since they operate strictly at the transport level, meaning they focus exclusively on data movement, not data in-

terpretation.

As experience with networking has grown, though, network architects have come to recognize that applica-
tions development support requires more than data transport. Thus, the International Standards Organization’s
seven-layer model for network architectures defines a presentation layer for the resolution of data representation

problems [2]. Other network architects, meanwhile, have recognized the semantic similarities between procedure
calls and the subprotocol embedded for synchronous command and response by many application protocols like ftp

and telnet. This has led to the notion of Remote Procedure Call (RPC) protocols [10].

Factoring out this application-independent subprotocol to a separate layer provides application designers with
a common foundation for use in constructing network applications. In addition to being easier to build, programs
produced in this way are able to use the familiar paradigm of a procedure call to acquire network services. This con-
tributes to the development of intimate environments by allowing programs to treat remote services almost as if they
were local library routines. Many RPC mechanisms also embed facilities for producing architecture-independent
data representations for passing parameters and results to and from remote procedures.

There currently are two popular RPC systems available for UNIX. One is an implementation of Xerox’s
Courier RPC system [3][11], based on the XNS protocol architecture. The second is Sun Microsystems’ RPC pack-
age [9], which is largely transport-independent. Partly because of this, it has gained not only a broad UNIX follow-
ing but also has been ported to such other environments as MS-DOS and IBM’s MVS [4].

An interesting aspect of Sun’s implementation is that its data representation standard, the External Data Rep-
resentation (XDR), is packaged separately. The separation of data representation from the RPC discipline leaves the

POINT OF CONTACT 14 September 2025

-3-

XDR facilities open for interchanges that are not RPC-based. In fact, the previously referenced C Advisor ended up
solving the problem of data exchange between heterogeneous hardware by writing and reading the binary numbers
via XDR facilities. This was done by modifying the programs so that they made calls on the XDR libraries rather
than reading or writing directly through standard I/O facilities. It also would have been possible to create filters for
each system and then extend the pipeline to include them. For example:

sun% writer | sun_long_to_xdr | rsh vax ’xdr_to_vax_long | reader’
0 1 2 3 4 5 6 7
sun%

This approach of ‘‘stacking’’ processing components is similar, though not identical, to Dennis Ritchie’s stream

mechanisms [7].

NETWORK SERVICES FOR INTEGRATED, HETEROGENEOUS ENVIRONMENTS

The simplified application environment provided by a foundation like RPC makes it possible to build some
very sophisticated network services. However, the architecture-independent mechanisms of RPC and the data-repre-
sentation mechanisms of XDR hardly are panaceas for the problems of heterogeneity. Indeed, care must be taken
when building a service on top of RPC and XDR to define the service with interfaces every bit as architecture-inde-
pendent as the mechanisms that will be used to access it. Examples of such interfaces can be found in Sun’s Net-
work File System (NFS) [8].

The NFS implements a service by which machines in the same network can share file systems. By providing
access rather than a copy service (like ftp and rcp), the NFS leverages all of the resources in a network environment.
The key is that it provides a common space of file objects on which all the resources can operate. The NFS itself
consists of a protocol and appropriate implementations of it for each of the systems participating in a given network.
The ‘‘protocol’’ is a description of the procedures, arguments, and return values to be used in each of these imple-
mentations.

Even though most NFS implementations are UNIX-based, and the abstract file system the NFS provides has
UNIX-like features, the NFS should be thought of as a service for which UNIX-based clients and servers can be im-
plemented--not as a network-wide implementation of the UNIX file system. This is an important viewpoint to take
when designing an architecture-independent service. A consequence of this design practice, though, is that those
functions whose semantics are accepted only on isolated native operating system environments are completely omit-
ted from the network service interface. UNIX, for instance, allows processes to read directories as normal files, but
this by no means is a universal attribute of file systems. The NFS service therefore prohibits the direct reading of di-
rectory files, instead providing ‘‘database-like’’ operations on directories by which various hosts can search for and
retrieve file entries.

The implementation of a service partitions naturally into two halves: one which calls the procedures defined
by the service interface (client), and one which implements the entry points (server). This permits asymmetric ser-
vice implementation across the members of a network--an important point of flexibility in networks that include sys-
tems of diverse capabilities. For instance, the lack of multitasking in MS-DOS prevents the system’s use as a plat-
form for implementing many servers, but that hardly keeps MS-DOS-based systems from participating as clients of
many services.

This ability to accommodate asymmetry gives the network services approach a clearcut advantage by permit-
ting resources to participate in networks to the extent that they can. The alternative would be to set ‘‘entrance re-
quirements’’ that would surely exclude certain resources altogether.

As ‘‘entrance requirements’’ are minimized, the likelihood that any giv en system will be able to participate
grows. The effect of increasing hetereogeneity this provides should motivate developers to specify service interfaces
that stateless servers can implement. Stateless servers need not retain any information about their clients between
transactions. By contrast, statefull servers do maintain information, creating a (perhaps implicit) requirement on ser-
vice participants to keep each piece of information current. To do so even in the face of network or other failures in-
creases implementation complexity and may exclude some potential service participants.

Thus, service designers need to weigh the value of features that require statefull implementations against the
costs of implementing them. In some cases, it may be possible to factor a single service requiring statefull imple-
mentation into several distinct subservices, several of which may be stateless--thus permitting layered and

POINT OF CONTACT 14 September 2025

-4-

asymmetric participation.

Beyond developing new functions, service designers must consider that evolving technology and changing
user needs will require parallel modifications in existing services. Since this means that the interfaces supplied by
services will change over time, users must be armed with version-control techniques. It simply is not feasible to in-
stantaneously update all the members of a network, so real systems will have to be able to accommodate version het-

erogeneity as well as component diversity. The asymmetric qualitities of network services can be applied here again,
since servers and clients can be updated independently so long as at least one matching server exists for each version
of each interface required by each client.

Implementations of the same service specification on different systems create yet another problem: service

heterogeneity. This refers to the fact that services generally come in varying flavors that differ in ways not defined
by their interfaces--such as performance or cost. For example, a troff service may be provided by both a small mi-
crocomputer and a supercomputer. Both flavors may be the ‘‘same’’ in that they both can process a document for
typesetting, but while one will complete the task in hours for a low cost, the other will be able to complete the job in
seconds for a significantly higher cost.

Users of an integrated environment generally do not want to worry about all the details of what, where, and
how a service is to be performed. More often than not, they prefer to express needs on a higher level, such as: ‘‘I
want my troff done sometime today’’, or ‘‘I need this troff done right now, no matter what the cost’’. This illus-
trates the need for flexible, often transparent, binding techniques between servers and clients. This requirement ac-
tually transcends the issue of heterogeneity since good binding strategies can be used to address--among others--the
system-wide issues of reliability and load-sharing through replicated servers.

Finally, it is important that any integrated environment be able to focus all of its various processing resources
on a single problem. Although this involves binding, the problem is far more involved than simply selecting the
‘‘right’’ server. It means that, in addition to being able to specify execution activities, users must be able to desig-
nate the ‘‘context’’ in which these activities take place. For UNIX users, this context includes such items as:

* The current working directory.

* The controlling terminal.

* The file creation mask.

* Ignored signals.

* The shell environment.

Most other operating systems have similar notions, but generally express them differently. An ‘‘execution service’’
needs to translate system-dependent items in such a way as to preserve the integrity of user-created work environ-
ments.

CONCLUSION

Although the problems confronting users of increasingly heterogeneous systems have spawned some radically
different responses, all approaches contain a common thread: the accommodation of heterogeneity is really a process
of building interfaces at the points at which all systems are homogeneous. The key lies in not only selecting an ap-
propriate form for an interface, but in locating it at the right spot. It also is important that interfaces be distributed
over sets of services which make only minimal ‘‘entrance requirements’’ because it is this that gives users the flexi-
bility to accommodate hardware and software heterogeneity as their computing environments evolve.

The task facing us all is to specify and implement of network services by which heterogeneous environments
can be integrated. In many cases, these services will have to provide facilities that previously have been accessible
only through program libraries (such as workstation graphics and window system libraries). The accommodation of
heterogeneity will require remote interfaces that make such services generally available across networks [1].

ACKNOWLEDGEMENTS

A number of colleagues at Sun Microsystems offered helpful comments and insights during the preparation of
this article--notably Bob Lyon, Gary Sager, and Bill Shannon.

POINT OF CONTACT 14 September 2025

-5-

BIOGRAPHY

Rob Gingell is Manager of New Systems in the Systems Software Group at Sun Microsystems. Prior to com-
ing to Sun, he worked at Case Western Reserve University on research in computer design and modelling tools,
computer graphics, and later in development of operating systems, networks and campus computing facilities.

REFERENCES

[1] J.A. Gosling, ‘‘SUNDEW: A Distributed and Extensible Window System’’, Usenix Association: Winter

Conference Proceedings, pp. 98-103 (Jan. 1986).

[2] Mark Hall, ‘‘The Potpourri of Networks’’, UNIX Review, pp. 25-26 (April 1985).

[3] Steven F. Holmgren, ‘‘The Untapped Potential of Remote Procedure Calls’’, UNIX Review, pp. 35-42, 92
(May 1985).

[4] S.N. Kahane, S.G. Tolchin, M.J. Schneider, D.W. Richmond, P. Barta, M.K. Ardolino, and H.S. Goldberg,
‘‘Windows in the Hospital or a Workstation-Based Inpatient Clinical Information System in the Johns Hopkins Hos-
pital’’, Usenix Association: Winter Conference Proceedings, pp. 45-61 (Jan. 1986).

[5] D.L. Nelson and P.J. Leach, ‘‘The Evolution of the Apollo Domain’’, Hawaii International Conference on

Systems Science (1984).

[6] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel, ‘‘LOCUS: A Network
Transparent, High Reliability Distributed System’’, Proceedings of the Eighth Symposium on Operating Systems

Principles, pp. 169-177 (Dec. 1981).

[7] D.M. Ritchie, ‘‘A Stream Input-Output System’’, AT&T Bell Laboratories Technical Journal, Vol. 63, No.
8, Part 2, pp. 1897-1910 (Oct. 1984).

[8] G.R. Sager and R.B. Lyon, ‘‘Distributed File System Strategies’’, UNIX Review, pp. 28-33, 94 (May 1985).

[9] Sun Microsystems, ‘‘Networking on the Sun Workstation’’, Part No. 800-1177-01 (May 1985).

[10] James E. White, ‘‘A High-Level Framework for Network-Based Resource Sharing’’, AFIPS Proceedings

of the National Computer Conference, pp. 561-570 (June 1976). Also available as RFC:RFC707.TXT at the
ARPAnet Network Information Center.

[11] Xerox Corporation, ‘‘Courier: The Remote Procedure Call Protocol’’, XSIS 038112 (Dec. 1981).

POINT OF CONTACT 14 September 2025

