
The Cambrid~L~ File Server 

Jeremy Dion 

U Computer Laboratory 
niversl~y of Cambriage 

I Introduction 

In a local area network such as the Cambridge ring [Wilkes79a], one of the 

principal benefits to be gained is the centralisation of expensive resources 

such as discs. Rather than each processor having a private disc~ one or more 

computers can provide a storage service for all others on the network. The 

Cambridge File Server, a program controlling a dedicated minicomputer and 150 

megabytes of disc storage, is an attempt to create a general storage service 

for the ring, and has been used to implement both filing systems and virtual 

memory systems in computers on the ring. This has been done for the CAP 

computer [Wilkes79b] and is described in a companion article [Dellar80]. 

The interface which a file server presents to its client machines might be 

placed nearly anywhere in the spectrum of functions provided by conventional 

filing systems. At one end lies the remote filing system which manages file 

directories for its clients, and transfers complete files identified by their 

character string names. At the other lies the remote disc which reads and 

writes disc blocks identified by their numerical addresses. In a network 

where the hosts are not all of the same type and do not provide the same 

operating system to their users, neither of the above approaches seems 

applicable. The remote filing system is too rigid if it does not allow a 

number of different filing systems to coexist on the same storage medium, and 

it does not provide a suitable interface for building virtual memory systems. 

The remote disc approach, on the other hand, does not impose sufficient 

control in an environment where its clients are not necessarily trusted filing 

system programs. 

The interface chosen for the Cambridge file server is intermediate between 

these extremes [Birrel179]. It represents an attempt to hide the physical 

characteristics of disc storage such as block sizes and timing constraints 

without imposing excessive restrictions on the use of this storage. Its 

principal characteristics are: 

- high speed transfers to random access word-addressed files. 

- the ability to perform atomic updates to files. 

- a capability-like access control mechanism. 

- automatic reclamation of unused storage. 

- a high degree of crash resistance. 

26 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F850708.850710&domain=pdf&date_stamp=1980-10-01


2 The File Server Interface 

The objects stored in the file server are of two types, files and indices. 

Each object is identified by a unique identifier (UID), which is chosen by the 

file server from a single large name space when the object is created. 

A file is a random access sequence of 16-bit words whose contents can be 

read or written by client machines using the following operations: 

- read (fileUID, offset, length): after a short delay, a number of words 

beginning at the selected word of the file are transmitted to the caller 

as quickly as possible. 

- write (fileUID, offset, length): after reservation of the resources 

needed to receive at maximum ring speed, an acknowledgement is sent to 

the client. The client is then expected to transmit the data as quickly 

as possible to the file server. 

An index is a list of unique identifiers, and is analogous to a C-list in 

capability machines [Dennis66]. An index can contain any UID, including its 

own. There are three operations provided on indices: 

preserve (indexUID, entry, UID): places UID, if valid, in the index named 

indexUID at the selected entry. 

retrieve (indexUID, entry): returns a unique identifier stored in an 

index to the caller. 

- delete (indexUID, entry): deletes a unique identifier from an index. 

The storage controlled by the file server thus appears to its clients as a 

directed graph whose nodes are files and indices. Each file or index 

operation is authorised by quoting the object's unique identifier to the file 

server, and UIDs are 64 bits long with 32 random bits. Each client, 

therefore, can access only some of the nodes in the graph at any time, namely 

those whose UIDs he knows, and those whose UIDs can be retrieved from 

accessible indices. Since UIDs are difficult to guess, the necessity of 

quoting one on every operation provides a degree of protection. Accidentally 

modified UIDs are unlikely to be valid, but on the other hand, only the time 

involved might prevent a malicious user from guessing an identifier by 

exhausting all 64-bit combinations. 

It will be noted that there are no explicit operations for deleting 

objects. Instead, only those objects whose UIDs can be found by successive 

retrieve operations beginning at a distinguished root index are kept in 

existence. The fact that an object is inaccessible is usually detected by a 

count of index references for it falling to zero, but since cyclic structures 

are allowed, periodic garbage collections are also necessary. An asynchronous 

27 



garbage collector designed to be run on a different machine is described in a 

companion article [Garnett80]. 

The absence of an explicit file or index deletion operation removes from 

clients the burden of deciding when to delete an object. A program receiving 

a UID from some source need only preserve that identifier in an index which is 

known to be reachable from the root to guarantee that the object will be kept 

by the file server. When it has finished with the object the index entry can 

be deleted without any decisions as to whether the object itself should be 

deleted or kept. 

Files and indices are created by "create file" and "create index" 

operations. Both functions take as arguments the UID of an existing index and 

an offset in it. After creating the object to the user's specifications, the 

file server preserves its UID in the selected index entry before returning the 

new UID to the caller. This ensures that the object is reachable from some 

index and prevents its premature deletion. 

When a new client wishes to store information on the file server, an index 

is created and preserved in the root index. The UID of this index is then 

given to the client and embedded in his programs. It is the only unique 

identifier he need ever remember. Thereafter, using this index as the root of 

his storage system, he may create a subgraph to represent his information, and 

may exchange identifiers with other clients. 

3 Reliability Issues 

The state of the storage system controlled by the file server is defined by 

the contents of the disc blocks which it manages. These are divided into data 

blocks, which hold the contents of objects, and mad blocks, which define their 

structure. Each file and index is stored as a tree of one, two or three 

levels. The leaves of the tree are data blocks, and all others are map blocks 

containing arrays of disc addresses. Every object is initially created as a 

single data block pointed at directly by its UID. When an update extends 

beyond the length of this block, the depth of the tree is automatically 

increased to two levels, and may increase to three for very large objects. 

28 



UID > Isizel 

object map 

, , , ,0 I0 , 

I I I I 
J I I I 

I I I I 

I I I I 
V V V V 

J data ' ' ' ' ' , , , data , , data , I I data j 

Fig I. Structure of a two-level object 

A file server transaction changes the state of the storage system by 

performing a sequence of disc writes. Some operations, such as reading from a 

file, cause no change whatsoever, but writing to a file may cause hundreds of 

disc blocks to be written. If the operation causes the allocation or 

deallocation of data blocks, then map blocks will also need to be updated. So 

in general, changing from one consistent state to another involves a sequence 

of disc writes to both map and data blocks. 

In the normal course of events, the sequence will complete once started. 

However, it can be interrupted by a software or hardware failure in either the 

.lient or the file server. In the worst case, some of the disc writes will 

have been performed, some will not have been attempted, and one block will 

have been corrupted. 

The ideal behaviour of the file server under these circumstances would be 

to undo the effect of all the disc writes so that the storage system reverts 

to its state before the start of the transaction. This would have to be done 

both when the file server detected a failure in the client, and also on each 

restart to undo operations which had failed due to a crash by the server. 

Thus, the fact that an operation is in progress but has not yet completed must 

be recorded in stable storage, and maintaining this information requires extra 

disc transfers. 

Such a scheme would provide atomic transactions on indices and files, in 

that either all updates in the transaction would be performed or none would, 

even if a crash occurred in the client or the file server during the 

transaction. The benefit obtained from this mechanism must be weighed against 

the overhead involved in recording the additional information. For some 

files, such as those which hold structures defining a filing system for some 

client, such a facility is valuable. It would mean that the client need not 

take particular precautions against a file directory update being interrupted 

by a crash, and therefore need not make excessive checks of his filing system 

on each restart. For other files, however, a mechanism to perform updates 

atomically is undesirable if it introduces any overhead. The output from a 

29 



compilation, for instance, is so easy to reproduce that no special care need 

be taken in updating it. 

For these reasons, the actual file server implementation is not quite so 

thorough about restoring the consistency of the storage system after a crash 

or a detected error. All map blocks are restored to their last consistent 

states so that the structure of the storage system is consistent in terms of 

block allocations, but the data in it are restored only as directed by the 

client. 

Every file is defined by the client as normal or special at the time of 

creation, according to whether or not the file will be used to hold essential 

information. Normal files have no overhead for atomic updates, and when a 

data block of a normal file is to be updated, the new copy overwrites the old 

one. If the write fails or a sequence of writes is interrupted, the original 

information is lost. Special files, however, are updated using an intentions 

mechanism [Sturgis74] which allows any number of block allocations and 

deallocations to be performed indivisibly. In addition to the conventional 

states allocated and deallocated, the block allocation tables in the file 

server record two additional states intending to allocate and intending to 

deallocate. The course of an update to a data block in a special file is then 

as follows: 

I) choose a deallocated block and mark it intending to allocate. 

2) change the state of the old block from allocated to intending to 

deallocate. 

3) write to the new block. 

This sequence is repeated for all blocks to be updated in the operation, thus 

creating a number of intending to allocate / intending to deallocate block 

pairs. At any time, the transitions performed to date may be reversed, thus 

restoring the object to its original state. 

When all blocks of the object involved in the transaction have been 

modified in this way, the operation is made irreversible by setting a commit 

bit associated with the object. From this point onwards, the file server 

guarantees that the updates to the object will eventually be performed. 

Finally, it is necessary to remove all intentions: 

I) change all intending to allocate blocks to state ailocated. 

2) change all intending to deallocate blocks to state deallocated. 

3) after the last intention has been removed, reset the object's commit 

bit. 

The object is now ready to be updated again. 

When restarting after a crash, it is essential to be able to correct all 

unfinished operations. The algorithm to do this is straightforward. The 

30 



block allocation tables in which all intentions are recorded are scanned to 

find the allocation state of each block. If it is in one of the intention 

states, then whether to perform or reverse the intention is decided by the 

object's commit bit, as shown in the state transition diagram below. 

commit I 
I 

intending 
to allocate 

I 

don't I 
commit 

> allocated < don't 
I I c o m m i t  
I 

intending. 
to aea±±oca~e 

I 
I 
I 

> deallocated < ......... commit 

Fig 2. State transitions for blocks in intention states 

There may, of course, be crashes during attempts to restart, but when the 

algorithm ultimately finds no intentions, the storage system is in a 

consistent allocation state. The net effect is that for those operations 

which had not yet written the commit bit, all block allocations have been 

reversed, and for the operations which had committed but had not finished the 

clearing up of intentions, all intentions have been performed. 

An implicit assumption in the above argument is that allocating or 

deallocating a block, which involves changing its state in a block allocation 

table and writing a new disc address in an object map, is atomic. 

Unfortunately, a crash between writing an allocation table and writing an 

object map will produce an inconsistent state. Worse, a disc write can fail 

on a map block leaving it unreadable. 

To make recovery from these errors possible, the file server uses two kinds 

of map blocks. Ob_~ ma_gp_g, already mentioned, constitute the non-leaf nodes 

of the trees which define objects, and are simply arrays of disc addresses. 

Cylinder maps, so named because there is one on each cylinder of each disc, 

are the block allocation tables which define the current use of blocks for one 

cylinder. A cylinder map is an array indexed by sector number, and each entry 

contains the allocation state (allocated, deallocated, intending to allocate, 

intending to deallocate) for a block. In addition, unless the block is 

deallocated, the cylinder map entry contains the UID of the object to which 

the block belongs and defines the position of the block in the tree. The 

cylinder map entry for the root block of an object tree also holds the commit 

bit for the object. 

31 



sector number -- 
i 
i 
V 

l I l I 

I I I I , , UID , , 

I I I 

I I I 
I I ' 
I 
I 

I I I 

I I I 
I I I 

I 

'--- commit bit (root blocks only) 
s e q u e n c e  n um.ber w i t h i n  l e v e l  
~evel in oojec, t tree 
D±OCK a±±oca~lon s~a~e 

Fig 3. Cylinder Map Format 

The value of this redundancy lies in the fact that each map block is now 

reconstructible. If an object map block is destroyed, the cylinder maps can 

be examined to find the blocks which were its children in the object tree, and 

so the disc addresses which the map contained can be reconstructed. If a 

cylinder map is destroyed, then by traversing the directed graph beginning at 

the root index (examining only object map and data blocks for indices), all 

useful objects can be found, and by enumerating each object tree, the cylinder 

map entry for every block can be reconstructed. At the end of this process, 

the cylinder map entries not visited can be marked deallocated. The structure 

of the data on disc is thus recorded twice, once in the hierarchy of object 

maps, and once in the list of cylinder map entries. Because of this, both 

cylinder maps and object maps can safely be updated in place. 

The complete algorithm for performing an atomic update is now as follows: 

I) As above, create block pairs with intentions by marking entries in 

cylinder maps held in core. The block allocation policy tends to 

cluster the blocks of an object by initially allocating all blocks near 

the root block, and then by trying to replace existing blocks with new 

blocks on the same cylinder. Buffered copies of the object maps are 

also updated with the new disc addresses. 

2) Write all modified cylinder maps to disc. 

3) Write all modified object maps to disc. 

4) Set the commit bit, held in the cylinder map entry for the root of the 

object tree. Write the cylinder map to disc. 

5) Inform the caller that the operation has been done. 

6) Perform all intentions by modifying the cylinder map entries written in 

step 3 and write them again. 

7) Reset the commit bit, and write the cylinder map to disc. 

The operation is made irreversible at step 4. Any failure before step 4 

causes the intentions to be reversed on restart, and any failure afterwards 

causes them to be performed. Because of this, it is safe to reply to the 

caller immediately after the commit bit has been written to disc. 

32 



The overhead involved in this sequence depends on the number of cylinder 

maps on which intentions are created, and the number of object map blocks 

changed to point to new data blocks. A large three-level object, for 

instance~ can have many object map blocks and its data blocks on several 

cylinders. Where n cylinder map and m object map blocks are changed, 2n+m+2 

extra disc transfers are needed compared with writing in place to data blocks, 

and n+m+1 of these transfers are synchronous with the client. 

Normally, where the disc is not fully loaded and the transaction involves a 

few data blocks, all intentions are created on the cylinder which holds the 

root of the object tree. In this case, an optimisation can be made. Since 

there is no need to ensure that updates on several cylinders are made 

indivisibly, the three changes to the same cylinder map in steps ~ 4, 6 and 7 

can be made in a single transfer at step 4. With this optimisation, the usual 

overhead for an atomic transaction is three disc transfers: one to write the 

cylinder map with intentions, one to write the object map containing the new 

disc addresses, and one to perform all intentions in the cylinder map. 

The restart algorithm must of course ensure that after all intentions have 

been reversed or performed, the cylinder maps and object maps agree on the 

state of every disc block. A crash between steps 3 and 4, for instance, will 

have left the object tree "ahead" of the cylinder maps. In consequence, when 

the cylinder maps are searched for intentions, if all the cylinder maps are 

found to be readable, their contents take precedence over the object maps. 

Whenever an intention is found on a block, the corresponding object tree is 

forced into agreement. If a cylinder map is found unreadable, however, then 

it must have been corrupted in one of steps 2, 4, or 7. In each case, the 

object maps are correct and can be used to rebuild the lost cylinder map. 

In the current implementation, it takes less than thirty seconds for the 

restart algorithm to scan the cylinder maps for 150 megabytes of storage. 

Rebuilding a cylinder map takes about thirty minutes, but has only once been 

necessary in a year of operation. 

4 Performance Issues 

A file server intended for use as a backing store device in a virtual 

memory system must not have noticeably worse performance than that of a local 

disc. In spite of the extra expense of atomic transactions, a number of 

factors combine to make the file server relatively efficient. 

The intentions mechanism comes into play only when blocks are allocated and 

deallocated. About half of all operations performed read information from the 

33 



file server and thus cause no extra work on this account. Of the remainder, 

most update operations take place on normal objects which do not use the 

intentions mechanism once blocks have been allocated to them. Only the 

indices and a relatively small number of files are special. Thus the majority 

of file server operations generate no disc traffic due to intentions. 

An exception to this rule is the creation of objects. As mentioned above~ 

when an object is created, its UID is preserved in an index. This 

preservation (like all index updates) is done atomically because losing the 

contents of an index might cause a number of objects to become unreachable 

from the root index and thus eligible for deletion. The work involved in this 

preservation in fact exceeds that needed to create the object. In addition, 

in practice it is found that the overwriting of the index entry usually causes 

the implicit deletion of the object whose UID was preserved there because most 

objects have only one index reference to them. Deletion, which occurs by the 

mechanism described above, is also relatively expensive, although it is 

performed asynchronously. 

The lightweight protocol used on the Cambridge ring for communication with 

the file server is perhaps the largest single contributor to its efficiency. 

All file server transactions other than read file and write file consist of 

the client sending a single request packet of perhaps 20 16-bit words, and 

receiving a reply packet of about the same size. Read file and write file 

involve additional transmissions of a potentially long sequence of data 

packets, each up to IK words long. No initial connection is needed to 

establish contact with the file server beyond sending the request packet, and 

the protocol provides no handshakes for error control or flow control. All 

data transfers are defined to take place as fast as the transmitter can send 

to avoid explicit flow control, and if the underlying packet protocol detects 

an error in a received packet, no error control facilities are provided beyond 

retrying the entire operation. This protocol has been found to permit 

transfers at about 80% of the maxim~n point-to-point ring bandwidth, with 

infrequent retries. Under light loading conditions, typical access times for 

256 words in a file are 50ms to read and 65ms to write, including 

communication overheads in both client and server. 

Since the file server maintains no state between transactions, some other 

mechanism must be used to take advantage of the locality of repeated 

operations on the same object. For this reason the file server maintains a 

cache of disc blocks on a least recently used basis. This cache of about fifty 

blocks is organised to favour the retention of cylinder maps and object maps 

over data blocks. Since cylinder maps are the equivalent of allocation bit 

maps in other systems, keeping them in the cache is particularly beneficial. 

34 



The method for resolving a unique identifier also contributes to quick 

access to objects. Each identifier consists of 32 bits of random data and the 

disc address of the root of the object tree. Validation of a unique 

identifier requires reading the disc block and its cylinder map. The cylinder 

map is then checked to ensure that the block is a root for an object tree with 

the same unique identifier, and the block is checked to ensure that the 

operation accesses words within the object limits. If these checks succeed, 

as is nearly always the case, the object is then directly accessible through 

its root block. For small objects whose contents are held directly in the 

root block, no further disc accesses need be made. The penalty paid for this 

form of unique identifier, as opposed to one resolved by indirection through a 

large table, is that the root of the object can never be moved, because its 

address is contained in the identifier. In practice, this has not been found 

to be a problem. 

The file server is currently used for several purposes. Two different 

operating systems use it as their only storage device. Microprocessors such 

as the name lookup server use it to archive important data. Its relatively 

quick response has allowed it to be used to record and play back digitised 

speech in real time. The interface provided seems both simple and suitable 

for a variety of purposes. 

References 

[Birrel179] A.D. Birrell and R.M. Needham. "A Universal File Server". 

Accepted for publication in IEEE Transactions on Computing. 

[Dollar80] C.N.R. Dollar. "Removing Backing Store Administration from the CAP 

Operating System". Operating Systems Review, this issue. 

[Dennis66] J.B. Dennis and E.C. Van Horne. "Programming semantics for 

multiprogrammed computers". CACM 9 3, March 1966. 

[Garnett80] N.H. Garnett and R.M. Needham. "An Asynchronous Garbage Collector 

for the Cambridge File Server". Operating Systems Review, this issue. 

[Sturgis74] H.E. Sturgis. "A Postmortem for a Time-Sharing System". Xerox 

Palo Alto Research Center technical report CSL74-I, January 1974. 

[Wilkes79a] M.V. Wilkes and D.J. Wheeler. "The Cambridge Digital 

Communications Ring". Proc. Local Area Communications Network Symposium, 

Boston, May 1979. U.S. National Bureau of Standards Special Publication. 

[Wilkes79b] M.V. Wilkes and R.M Needham. "The Cambridge CAP computer and its 

operating system". Operating and Programming Systems Series, Elsevier 

North Holland, 1979. 

35 


