
1-1

Sun UNIX Modifications to use
the Sun Network File Service

Bill Joy

Company Confidential

ABSTRACT

The Sun Network File Service provides shared access to a set of files. The
implementation consists of three main parts: modifications to UNIX to support
several drivers for file systems, a file system driver which speaks to the Network
File Service, and the server code which implements the Network File Service
This document describes the virtual file system interface and includes an appen-
dix with the draft code for the file system implementation-independent code to
be included in UNIX.
It also includes a section answering specific questions about the functional divi-
sions between the base-level UNIX system, the driver which speaks to the Net-
work File Service and the Network File Service itself, assuming that the latter
two are the client and server-side implementations of the standard Sun Network
File Service.

Overview

Sun version 1.0 of UNIX provides transport level network services which allow remote login and
sle trans a sis easy to write a dition iN application protons no provide other network
local disks. This protocol does not support shared access to network files.

To support shared access to network files we are modifying UNIX to support multiple implemen-
tations of its file system. Each implementation acts as a file system driver called by implementa
tion independent routines in the mainline system. A driver for the file system can then be writ-
ten to talk to the Sun Network File Service without modifying the mainline UNIX code.
To the UNIX user, file systems accessed over the network and local file systems are indistinguish-
able. Both local and remote file systems can be mounted into the file system hierarchy.
The implementation of the Sun Network File Service consists of three main parts: the
modifications to UNIX to support the virtual file system concept, the writing of a UNIX file sys-
tem driver to talk to the Sun Network File Service, and the implementation of the code to run
within UNIX to implement the Sun Network File Service.
1. Facilities in the 1.0 release of UNIX
The current version of UNIX contains a file system implementation which is present in each
workstation, and which interfaces to the disk drivers in the system. Each disk driver provides
read and write operations on its underlying disk drive. A disk driver exists which accesses a

1 - 2

- 2 -

disk partition on another machine. This network disk driver allows diskless operation.
The interface between the mainline UNIX system and the disk driver is managed by a set of
buffer management routines. These routines allow both cached and uncached input/output
operations to occur.

A higher-level concept in the UNIX system is the inode, which is the central i n p u t o u t p u t sys-
tem abstraction. Each open file, directory, or device is represented in the system as an inode.
UNIX system calls, such as read and writes to files or devices and operations which create and
remove files all apply to inodes.
Inodes are uniquely identified by the device in which they are contained and a small integer
number. Each file system contains a set of inodes with numbers from 1 to a fixed upper bound,
typically a few tens of thousands.
The system maintains a table of active inodes. In particular, the current working directory of a
process is an inode, and an operation namei exists which takes a pathname and searches the set
of active file systems for the named file or device. Namei converts the pathname into a pointer
to a locked inode, with side effects which are usable in creating and removing files.
A typical system call which takes a pathname will call names to translate the pathname, and
then perform operations on the inode which is returned. If the operation is creating a file, then
namei will return with the containing directory locked, and return information to allow the new
entry to be created. Namei is both a central and complex routine.

User programs running in UNIX make system calls to perform operations on both open files and
on files whose names are specified relative to the root directory of the file system or to the
current working directory. Information about open files and active communications channels is
maintained in an open file table. Stored in this table for active inodes is a pointer to an inode.
The file table implementation is object oriented, so that each file table structure references a set
of functions for performing operations on the contained object, such as reading and writing.
Operations which apply to named files use the namei routine to translate the pathname, and
then use some low level information returned by the namei routine, or inode-level operations to
achieve their desired result. As an example, removal of a file is achieved by calling namei giving
a path name and an indication that the named is to be removed. Namei searches the directories
involved in the file name, and when it finds the entry in the final directory it leaves information
as to the offset and size of the name to be removed from the directory in a process-global data
structure. The system call handler then calls a sibling routine to names to remove the entry
from the directory structure. If this is the last directory reference to the underlying inode,
inode-level routines are invoked to free the space associated with the inode and make the inode
slot available for reallocation.

The system handles pathnames involving multiple file systems. The mount command indicates
that a directory within one file system, is to be overlaid with the root of another file system. A
call:

/etc/mount /dev/sdOg /usr
indicates that the file system structure contained in the disk partition "sdOg" is to be made
available beginning at the path name "/usr." Internally this is implemented by marking the
inode for the "/usr" directory (which is in the root file system) as being mounted on. When a
pathname search encounters a name beginning with "/usr", the search encounters the inode for
the "/usr" directory and notices that it is mounted on. This inode indicates the new inode at
which the search is to continue, and the search is continued with inodes from the newly mounted
"sdOg" file system. UNIX uses the fact that the root inode of each file system has a fixed

1-3

- 3 -

number ROOTINO to perform the indirection.
One other facility supports the use of mounted file systems. It is a convention in each directory
that the pathname ".." refers to the parent directory of the current directory. This is possible
because UNIX enforces the structuring of the directory hierarchy into a tree, so that each direc-
tory has a unique parent. However, in the root directory of each mounted file system the ".."
entry refers to the directory itself, since directory entries cannot reference across file system
boundaries. The interpretation of this entry as a reference to its parent can occur only dynami-
cally in the namei routine, as it encounters a ".." in the root directory of a mounted file system.
An important point here is that the relationship between different file systems is maintained

matied by the files are Tressie ate "s pa dame only be doss the mount conta have ade
them available there.

2. S t ruc ture for the new release

In the new release of UNIX each workstation contains code which translates system calls on files
into operations on a set of "virtual inodes" or nodes. Each unode contains a pointer to an array
of functions which implement the operations necessary to support an abstract file system. With
each workstation is also loaded one or more virtual file system (or ufs) implementors who supply
the n o d e operations.

The two implementors for the first new release are the local file system implementation unizfs
which implements a file system in a disk partition, as before, and netfs which accesses a file sys-
tem on a remote machine which supports the Sun Network File Service protocol. A workstation
containing the netfs implementation can access files shared with other workstations.
The approach described here allows UNIX to talk not just to a particular file server, but makes
it possible to write virtual file system drivers for other file servers and to access files stored on
other operating systems.

The interface between the mainline UNIX system and the virtual file system uses the node data
structure. Each workstation maintains a table of vodes, with the pair (vis,number) logically
replacing the (dev,number) pair of the current release.
The current working directory of a process is given by a node. Operations involving path
names are broken down by the system into a number of operations involving a directory and a
component name. Thus to translate the pathname "/bin/sh" into a unode pointer, the system
first takes the node pointer for the root directory "/", and invokes the LOOKUP operation of
this node's implementor, giving it as argument the character string "bin". If this operation
succeeds, it will return a node for the "/bin" directory. This node can then be asked to
LOOKUP the string "sh",', and the resulting node is a reference to "/bin/sh". The path traver-
sal and series of node operations is performed by the routine apply which is part of the base
UNIX system.
The apply routine is, in many ways, a logical replacement for the namei routine of the previous
system. It differs from namei, however, in that it does not return nodes locked, and does not
leave information as side effects which can be used to perform further operations on the locked
nodes. Rather than having a number of operations on nodes result from each UNIX-level
operation, the node abstraction is designed so that each UNIX-level operation can be resolved
by a sequence of calls on the node primitives so that its effect is then achieved by a single node
operation. The preliminary operations can be used to translate pathnames, but the final opera-
tion atomically performs all of the permanent actions.

1 - 4

- 4 -

A typical system call which takes a pathname will thus call apply to translate the pathname,
passing it the operation and arguments to the operation which is to be performed on the named
file. If the operation is one which applies to the directory containing the file (e.g. remove a file,
or create a file), then apply will ultimately invoke the operation on the containing directory. If
the operation is one which applies to the file itself (eg. change its owner), then apply insists that
the file exist, and if it does invokes the operation on the file itself.
In both cases the operation may encounter symbolic links. These are files marked as being spe-
cial and which cause their contents to be substituted into the pathname as it is translated. The
base-level UNIX system code is designed so that such symbolic links are always followed if they
occur at any level in the pathname translation except at the final entry. If an operation is
applied to a symbolic link but decides it would rather operate on the file referenced by the link,
it can return a characteristic error to the epply routine and ask it to further interpret the con-
tents of this link.

As in the current system, the system handles pathnames involving multiple virtual file systems.
The netmount command, in addition to the mount command can be used to indicate that a
directory withing one file system is to be overlaid with the root of another file system. In the
new system it is the node, rather than the inode which is marked as being overlaid, and the ufs
table contains a function which can be invoked to return the root node of the mounted file sys-
tem. We use a function rather than storing a pointer to a node because we expect that the
unode for a remote mounted file system will only be initialized upon use, since the remote system
may not be available when the netmount occurs.

The " " convention for remote file systems is supported by the apply routine, by looking at flags
which indicate when a node is the root of a mounted file system.

The relationship between mounted file systems is maintained on each workstation, so that it is
possible for each workstation to have access to a different set of file systems.

3. Functional Division
This section discusses where and how various facilities are implemented to support shared access
to a file from this new release of the system to a Sun Network File Server. Most of the answers
are determined not by the us and unode structures described here, but by more global network
architecture. We include the discussion for completeness.

How is booting performed?
A program resident in a prom in the workstation loads UNIX from a boot server. UNIX then
locates its root file system on the network, using a broadcast-based datagram protocol. UNIX
can then begin to access files on this file server in the same way that it does after any other net-
mount command.

How do more network file systems become available?
When UNIX boots it runs a standard startup program /etc/init. Shell scripts run by /ete/init
invoke further netmount commands to make various file systems on the network available.

Who guarantees integrity of the network file systems?
A machine which implements the Sun Network File Service protocol retains control over the
integrity of its file system. The operations which are specified by the remote clients of such a file
system are high-level and cannot affect the integrity of the server file systems. The server
operates as a normal UNIX system and checks all of its file systems each time it reboots. The

1 - 5
- 5 -

results of this check are not aflected by the fact that remote clients were accessing the servers

What happens when the server crashes?
A server crash results in the loss of some state in the Network File Service data structures on
that server. This will cause each client workstation to have to do additional work when the
server reboots to reestablish authentication and a secure communications channel. Since the File
Service has no volatile state which can not be reconstructed by use of the File Service protocol,
machines accessing the service will not lose state as a result of a File Service crash. Rather, they
will only see a service interruption.

How are network files protected?
Network files are subject to normal UNIX protection checks. Each client workstation has some
set of user-id's which are authenticated for use on the remote server. Other id's access the
remote server as an outlandish user-id which normally denies all access. In particular, most
workstations will not have access as root, the privileged user, to the files stored on the File Ser-
vice.

What if a server is down when UNIX wishes to boot?
If the server which is down is the server for a critical file system, e.g. the root file system of the
client workstation, then the workstation will not be able to boot until the server becomes avail-
able again. Non-critical file systems on other machines will become available as soon as the
machine on which they are mounted is available.

How can & new file system be added to the network?
Any disk partition containing a UNIX file system can be made available to other machines on the
network by the machine which is attached to the disk containing the partition. The only
preparation the UNIX machine must make is to mount the file system when it boots.

4. Description of draft code
As an appendix this document contains listings of a number of files which define and implement
the us and unode operations for the base-level system. These files are:
vis.h
This file defines the structure per virtual file system. It shows the operations which each virtual
file system must supply, and the structure whereby arguments to a generic mount routine are
passed to a particular us implementor.

vis_pathname.b
This file shows the structure used to pass pathnames between the base-level system routines, e.gas an argument to apply.
vnode.h
This file defines the very important unode structure. The structure itself has many felds in com-
mon with the older inode structure of the current 1.0 system. The most important changes are
the deletion from the structure of the implementation-specific fields, and the addition of the u op
procedures to perform operations.

1-6
= : - 6 -

Alto da end in pointil is to a t setre eras inf mid lookup name i directories
referenced by the unode.
The final structure defined here is the vopargres structure, which is passed as argument to each
of the o_op routines, and in which each of those routines returns a result. Not all the fields in
the structure are used by each routine.

vis_apply.c
This file contains the important apply routine, which processes the semantics for pathnametranslation and operations.
vis_mount.c
This file contains the generic implementations of the mount and netmount system calls.
vis_pathname.c
This file contains the routines supporting use of the pathname data structure defined invis_pathname.h.

vis_syscalls.c
This file contains the base-level system's implementation of the system calls which apply to files(and thus to vodes), except for read, write and ioctl.
vnode.c
This file contains the support routines for maintaining the unode data structure instances.
vnode_rwios.c
This file contains the routines which implement read, write, ioctl and select on nodes, as well asthe system locking facilities.

