
March 26, 1985

Sun Network Filesystem Protocol Specification
Russel Sandberg

sun!rusty
Sun Microsystems, Inc.

2550 Garcia Ave.
Mountain View, CA 94043

C o n t e n t s

1. Introduction
1.1. Remote Procedure Call
1.2. External Data Representation
1.3. Stateless Servers

2. NFS Protocol Definition
2.1. Version 2

2.1.1. Server/Client Relationship
2.1.2. Permission Issues
2.1.3. RPC Information
2.1.4. Sizes
2.1.5. Basic Data Types

2.1.5.1. stat
2.1.5.2. ftype
2.1.5.3. fhandle
2.1.5.4. timeval
2.1.5.5. fattr
2.1.5.6. s a t t r
2.1.5.7. filename
2.1.5.8. path
2.1.5.9. attrstat
2.1.5.10. diropargs
2.1.5.11. diropres...

2.1.6. Server Procedures
2.1.6.1. Do Nothing
2.1.6.2. Get File Attributes
2.1.6.3. Set File Attributes
2.1.6.4. Get Filesystem Root
2.1.6.5. Lookup File Name
2.1.6.6. Read From Symbolic Link
2.1.6.7. Read From File.
2.1.6.8. • Write to Cache ...
2.1.6.9. Write to File
2.1.6.10. Create File
2.1.6.11. Remove File
2.1.6.12. Rename File
2.1.6.13. Create Link to a File

N
N

H
M

10
12
13
14
15
16
17
18
19
20
21
22
23
24

2.1.6.14. Create Symbolic Link
2.1.6.15. Create Directory
2.1.6.16. Remove Directory
2.1.6.17. Read From Directory
2.1.6.18. Get Filesystem Attributes

3. Mount Protocol Definition
3.1. Version 1

3.1.1. RPC Information
3.1.2. Sizes
3.1.3. Basic Data Types

3.1.3.1. fhandle
3.1.3.2. fastatus
3.1.3.3. dirpath
3.1.3.4. name

3.1.4. Server Procedures
3.1.4.1. Do Nothing ...
3.1.4.2. Add Mount Entry
3.1.4.3. Return Mount Entries
3.1.4.4. Remove Mount Entry
3.1.4.5. Remove All Mount Entries
3.1.4.6. Return Export List

25
26
27
28
29

3 0
30
30
30
31
31
31
31
31
31
3 3
34
35
36
37
38

Network Filesystem Protocol Specification

1. I n t r o d u c t i o n

The Sun Network Filesystem (NFS) protocol provides transparent remote access to shared
flesystems over local area networks. The NFS protocol is designed to be machine, operating sys-
tem, network architecture, and transport protocol independent. This independence is achieved
through the use of Remote Procedure Call (RPC) primitives built on top of an External Data
Representation (XDR).
The supporting mount protocol allows the server to hand out remote access privileges to a res-
tricted set of clients. It allows the client to attach a remote directory tree at any point on his
local filesystem.

1.1. Remote P rocedu re Call

Sun's Remote Procedure Call specification reference] provides a clean, procedure oriented inter-
face to remote services. Each server supplies a program which is a set of procedures. The com-
bination of host address, program number, and procedure number specify one remote service
procedure.
RPC is a high level protocol built on top of a transport protocol. It does not depend on services
provides by specific protocols so it can easily be used with any underlying transport protocol.
Currently the N S protocol runs only over UDP/IP.
The RPC protocol includes a slot for authentication parameters on every call [reference]. The
contents of the authentication parameters are determined by the "favor" of authentication used
by the server and client, and a server may support several different favors of authentication at
once. The flavor called AUTH_NONE provides null authentication, that is, no authentication
information is passed. The AUTH_UNIX flavor passes uid, gid, and groups with each call.
Servers have been known to change over time and so can the protocol that they use so RPC pro-
vides a version number with each RPC request. Thus, one server can service requests for several
different versions of the protocol at the same time.

1 1 A c l 1 0 0 г

Introduction

1.2. External Data Representation
The Sun External Data Representation (DR) specification reference provides a common way of

presenting a set of data types over a network. This takes care of the problem at different byterders on different, communicating machines.
machines with different structure alignment algorithms can share a common format on the net-
work.
In this document we use the XDR data definition language to specify the parameters and results
to each of the RPC service procedures that a NFS server provides. The XDR DDL reads a lot
like "C" declarations. A few new constructs have been added. The notation

s t r i n g
s t r i n g

name [SIZE]:
data<DSIZE>

defines name, which is a fixed size block of SIZE bytes, and data, which is a variable size bloc!
of up to DSIZE bytes. This same notation is used to indicate fixed length arrays and arrays witl
a variable number of elements up to a fixed maximum.
The discriminated union definition:

u n i o n s w i t c h (enum s t a t u s) {
NES_OK:

s t r u c t {
fi l e n a m e
filename
integer

£11e1;
f1le2;
count;

NES_ERROR:
struct {

e r r s t a t
integer

e r r o r ;
errno;

default:
s t r u c t (}

}

means the first thing over the network is an enumeration type called status. If the value of
status is NFS_OK, the next thing on the network will be the structure containing file1, file2,
and count. If the value of status is neither NFS_OK or NFS_ERROR then there is no more
data to look at.

1.3. S t a t e l e s s Se rve r s

The NFS protocol is stateless. That is, a server does not need to maintain state about any of its
clients in order to function correctly. Stateless servers have a distinct advantage over stateful
servers in the event of a crash. With stateless servers, a client need only retry a request until
the server responds, it does not even need to know that the server has crashed. The client of a
stateful server, on the other hand, needs to detect a server crash and rebuild the server's state
when it comes back up.

This may not sound like an important issue but it eflects the protocol in some strange ways. We
feel that it is worth a bit of extra complexity in the protocol to be able to write very simple
servers with no need for fancy crash recovery.

Introduction

2. N F S Pro toco l Defini t ion

The NFS protocol is designed to be operating system independent, but let's face it, it was
designed in a UNIX† environment. As such, it has some features which are very UNDish. When
in doubt about how something should work, a quick look at how it is done in UNIX will probably
put you on the right track.

The protocol definition is given as a set of procedures with arguments and results defined using
XDR. A brief description of the function of each procedure should provide enough information
to allow implementation on most machines. There is a different section provided for each sup.
ported version of the protocol. Most of the procedures and their parameters and results are
pretty self explanatory. A few do not fit into the normal UNIX mold however.
The LOOKUP procedure looks up one component of a pathname at a time. It is not obvious at
first why it does not just take the whole pathname, traipse down the directories, and return a file
handle when it is done. There are two good reasons not to do this. First, pathnames need
separators between the directory components, and different operating systems use different
separators. We could define a "Network Standard Pathname Representation" but then every
pathname would have to be parsed and converted at each end. Second, if pathnames are passed,
the server has to keep track of the mounted filesystems for all of its clients so that it can break
the pathname at the right point and pass the remainder on to the correct server.
Another procedure which might seem strange to UNIX people is the READDIR procedure. What
READDIR does is provide a network standard format for representing directories. The same
argument as above could have been used to justify a READDIR procedure which returns only
one directory entry per call. The problem is efficiency. Directories can contain many entries,
and a remote call to return each would just be too slow.

2.1. Version 2 talk about protocol persion
There are various procedures and parameters that are no longer used which will probably be
removed in later versions.

2.1.1. Server/ Client Relationship

The NFS protocol is designed to allow servers to be as simple and general as possible. Some-
times the simplicity of the server can be a problem if the client wants to implement complicated
flesystem semantics.
For example, UNIX allows removal of open files. A process can open a file and, while it is open,
remove it from the directory. The file can be read and written as long as the process keeps it
open even though the file has no name in the filesystem. It is impossible for a stateless server to
implement these semantics. The client can do some tricks like renaming the file on remove and
only removing it on close. We believe that the server provides enough functionality to imple-
ment most filesystem semantics on the client.
Every NFS client can also be a server, and remote and local mounted filesystems can be freely
intermixed. This leads to some interesting problems when a client travels down the directory
tree of a remote filesystem and reaches the nount point on the server for another remote
+ UNIX is a trademark of Bell Laboratories.

٣٩٣٩٨٣١٢٣٦

NFS Protocol Definition

filesystem. Allowing the server to following the second remote mount means it must do loop
detection, server lookup, and user revalidation. Instead, we decided not to let clients cross a
server's mount point. When a client does a LOOKUP on a directory that the server has

mounted a filesystem on, the client sees the underlying directory instead of the mounted direc-
tory. A client can do remote mounts that match the server's mount points to maintain the
server's view.

2.1.2. Permission Issues

The NFS protocol, strictly speaking, does not define the permission checking used by servers.
However, it is expected that a server will do normal UNIX permission checking using
AUTH_UNIX style authentication as the basis of its protection mechanism. The server gets the
client's effective uid, effective gid and groups on each call, and uses them to check permission.
There are various problems with this method that can been resolved in interesting ways.

Using uid and gids implies that the client and server share the same uid list. Every server and
client pair must have the same mapping from user to uid and from group to gid. Since every
client can also be a server this tends to imply that the whole network shares the same uid/gid
space. This is acceptable for the short term, but a more workable network authentication
method will be necessary before long.
Another problem arises due to the semantics of open. UNIX does its permission checking at open
time and then remembers the fact that the file is open and has been checked on later read and
write requests. With stateless servers this breaks down because the server has no idea that the

file is open and it must do permission checking on each read and write call. On a local filesys-
tem, a user can open a file then change the permissions so that no one is allowed to touch it, but
she will still be able to write to the file because it is open. On a remote filesystem, on the other
hand, the write would fail. To get around this problem the server's permission checking algo
rithm should allow the owner of a file to access it no matter what the permissions are set to.

A similar problem has to do with paging in from a file over the network. The UNIX kernel
checks for execute permission before opening a file for demand paging then reads blocks from the
open file. The file may not have read permission but after it is opened it doesn't matter. An
NFS server can't tell the difference between a normal file read and a demand page-in read. To
make this work the server allows reading of files if the uid given in the call has execute or read

permission on the file.
In UNIX, the user id zero has access to all files no matter what permission and ownership they
have. This super-user permission is not allowed on the server since anyone who can become
super-user on their workstation could gain access to all remote files. Instead, the server maps
uid O to -2 before doing its access checking. This works as long as the NFS is not used to sup-
ply root filesystems, where super-user access cannot be avoided. Eventually servers will have to
allow some kind of limited super-user access.

2.1.3. RPC Information

Authentication
The NES service uses AUTH_UNIX style authentication except in the NULL procedure
where AUTH_NONE is also allowed.

n n . n r ٦٦٤ L : ٩٥٢

NFS Protocol Definition

Protocols
NFS currently is supported on UDP/IP. only.

Constants
These are the RPC constants needed to call the NFS service. They are given in decimal.

PROCRAM
VERSION 200003

Port Number
Tbe NFS protocol currently uses the UPD port number 2049. This is a bug in the protocol
and will be changed very shortly.

2.1.4. Sizes
These are the sizes, given in decimal bytes, of various XDR structures used in the protocol.
MAXDATA 8192

The maximum number of bytes of data in a READ or WRITE request.
MAXPATHLEN 1024

The maximum number of bytes in a pathname argument.
MAXNAMLEN 255

The maximum number of bytes in a file name argument.
COOKIESIZE 4

The size in bytes of the opaque "cookie" passed by READDIR.
FHSIZE 32

The size in bytes of the opaque file handle.

2.1.5. Basic Data Types

The following XDR definitions are basic structures and types which are used in other structures
later on.

2.1.5.1. stat

NFS Protocol Definition

need tot!
NYO

typedef enum {
NES_OK = 0,
NE SERR_PERM=1,
NE SERR_NOENT=2,
NESERR_I0=5,
NESERR_NXIO=6,
NE SERR_ACCES=13,
NE SERR_EXIST=17,
NESERR_NODEV=19.
NESERR_NOTDIR=20,
NESERR_ISDIR=21,
NESERR_FBIG=27,
NESERR_NOSPC=28,
NESERR_ROES=30,
NE SERR_NAMETOOLONG=63,
NE SERR_NOTEMPTY=66,
NE SERR_DQUOT=69,
NE SERR_STALE=70,
NESERR_WELUSH=99

} s t a t ;

The stat type is returned with every procedure's results. A value of NFS_OK indicates that the
call completed successfully and the results are valid. The other values indicate some kind of
error occurred on the server side during the servicing of the procedure. The error values are
derived from UNIX error numbers.
NFSERR_PERM

Not owner. The caller does not have correct ownership to perform the requested operation.
NFSERR_NOENT

No such file or directory. The file or directory specified does not exist.
NESERR_IO

1/0 error. Some sort of hard error occurred when the operation was in progress. This could
be a disk error for example.

NFSERR_NXIO
No such device or address.

NFSERR_ACCES
Permission denied. The caller does not have the correct permission to perform the requested
operation.

NFSERR_EXIST
File exists. The file specified already exists.

NFSERR_NODEV
No such device.

NFSERR_NOTDIR
Not a directory. The caller specified a non-directory in a directory operation.

NFSERR ISDIR
Is a directory. The caller specified a directory in a non-directory operation.

NFSERR_FBIG
File too large. The operation caused a file to grow beyond the server's limit.

1 4 M o r c h 1 0 0 5

NFS Protocol Definition

NFSERR_NOSPC
No space left on device. The operation caused the server's filesystem to reach its limit.

NFSERR_ROFS
Read-only filesystem. Write attempted on a read-only filesystem.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty. Attempted to remove a directory that was not empty.

NESERR DQUOT
Disc quota exceeded. The client's disk quota on the server has been exceeded.

NFSERR_STALE
The handle given in the arguments was invalid. That is, the file referred to by that file
handle no longer exists or access to it has been revoked.

NFSERR_WFLUSH
The server's write cache used in the WRITECACHE call got flushed to disk.

2.1.5.2. Stype

typedef enum {
NENON = 0,
NEREG = 1,
NEDIR = 2,
NEBLK = 3,
NECHR = 4,
NELNK = 5

} ftype;

The enumeration ftype gives the type of a file. The type NENON indicates a non-file, NFREG
is a regular file, NFDIR is a directory, NFBLK is a block-special device, NFCHR is a
character-special device, NFLNK is a symbolic link.

2.1.5.9. Jhandle

typedef opaque fhandle [FHSIZE] :

The fhandle is ibe file handle that the server passes to the client. All file operations are done
using file handles to refer to a file or directory. The file handle can contain what ever informa-
tion the server needs to distinguish an individual file.

2.1.5.4. timeval
typedef struct {

unsigned seconds;
unsigned useconds;

I timeval;
The timeval structure is the number of seconds and microseconds since midnight January 1,

1 ٢ . 1 1 ٨ 0 ٢ ~ D D A R T

NFS Protocol Definition

1970 Greenwich Mean Time. It is used to pass time and date information.

2.1.5.5. fattr
typedef struct {

{type type;
unsigned mode;
unsigned nlink;
unsigned uid;
unsigned gid;
unsigned size;
unsigned blocksize;
unsigned rdev;
unsigned blocks;
u n s i g n e d f s i d ;

u n s i g n e d fi l e i d ;
t i m e v a l a t i m e ;
t i m e v a l m t i m e ;
t i m e v a l c t i m e ;

} f a t t r :

The fattr structure contains the attributes of a file. Type is the type of the file. Nlink is the
number of hard links to the file, that is, the number of diflerent names for the same file. Uid is
the user identification number of the owner of the file. Gid is the group identification number of
the group of the file. Size is the size in bytes of the file. Blocksize is the size in bytes of a block
of the file. Rdev is the device number of the file if it is type NFCHR or NFBLK. Blocks is the
number of blocks that the file takes up on disk. Faid is the file system identifier for the filesys
tem that contains the file. Fileid is a number which uniquely identifies the file within its filesys-
tem. Atime is the time when the file was last accessed for either read or write. Mtime is the
time when the file data was last modified (written). Ctime is the time when the status of the file
was last changed. Writing to the file also changes time if the size of the file changes.
Mode is the access mode encoded as a set of bits. The bits are the same as the mode bits
returned by the stat system call in UNIX. Notice that the file type is specified both in the mode

i t s a n d i n t h e h l e t y p e .its and in dee file type. This is vall a bug in the protocol and should be fixed in future ver
0040000 This is a directory. The type field should be NFDIR.
0020000 This is a character special file. The type feld should be NFCHR.
0060000 This is a block special file. The type field should be NFBLK.
0100000 This is a regular file. The type field should be NFREG.
0120000 This is a symbolic link file. The type field should be NFLNK.
0140000 This is a named socket. The type field should be NENON_
0004000 Set user id on execution.

0002000 Set group id on execution.
0001000 Save swapped text even after use.

0000400 Read permission for owner.

D R A E T 1 4 M a r c h 1 0 8 5

NFS Protocol Definition

0000200 Write permission for owner.
0000100 Execute and search permission for owner.
0000040 Read permission for group.
0000020 Write permission for group.
0000010 Execute and search permission for group.
0000004 Read permission for others.
0000002 Write permission for others.

0000001 Execute and search permission for others.

2.1.5.6. sattr

typedef struct &
unsigned mode;
unsigned uid;
unsigned gid;
unsigned size;
timeval atime;
timeval

} sattr:
ntime;

The sattr structure contains the file attributes which can be set from the client. The fields are
the same as for fattr above. A size of zero means the file should be truncated. A value of -1
indicates a feld that should be ignored.

2.1.5.7. filename

typedef s t r ing filename<MAXNAMLEN>:

The type filename is used for passing file names or pathname components.

2.1.5.8. path

typedef s t r ing path<MAXPATHLEN>;

The dle path name of ame. To a l serter tie just a string with no interal structure, but to
2.1.5.9. attrstat

NFS Protocol Definition

typedef union switch (stat status) {
NES_OK:

f a t t r attributes:
default:

s t ruct ")
3 attrstat;

The attrstat structure is a common procedure result. It contains a status and, if the call suc-
ceeded, it also contains the attributes of the file on which the operation was done.

2.1.5.10. diropargs
typedef s t ruc t {

f h a n d l e d i r ;
fIlename name;

3 diropargs:
The diropargs structure is used in directory operations. The thandle dir is the directory in
which to find the file name. A directory operation is one in which the directory is effected.

2.1.5.11. diropres

typedef union switch (stat status) {
NES_OK:

struct {
thandle
fattr

f1le;
attributes;

d e f a u l t : -
s t r u c t (}

I diropres:

The results of a directory operation are returned in a diropres structure. If the call succeeded a
new file handle file and the attributes associated with that file are returned along with the
status.

2.1.6. Server Procedures

The following sections define the RPC procedures that are supplied by a NFS server. The RPC
procedure number is given at the top of the page along with the name and version. The
SYNOPSIS field has the format:

‹proc #>. ‹proc name› (<arguments>) returns (‹results))
‹ a r g u m e n t d e c l a r a t i o n s >
‹ r e s u l t s d e c l a r a t i o n s >

In the first line, proc name is the name of the procedure, arguments is a list of the names of the
arguments, results is a list of the names of the results. The following lines give the XDR argu-
ment declarations and results declarations. The DESCRIPTION feld tells what the procedure is
expected to do and how its arguments and results are used. The BUGS feld lists problems with
this procedure.

1 0 . DRAFT 1 4 March 1985

NFS Protocol Definition

All of the procedures in the NFS protocol are assumed to be synchronous. When a procedure
returns to the client, the client can assume that the operation has completed and any data asso
ciated with the request is now on stable storage. For example, a client WRITE request may
cause the server to update data blocks, filesystem information blocks (such as indirect blocks in
UNIX), and file attribute information (size and modify times). When the WRITE returns to the
client, it can assume that the write is safe, even in case of a server crash, and it can discard the
data written. This is a very important part of the statelessness of the server. If the server
waited to flush data from remote requests the client would have to save those requests so that it
could resend them in case of a server crash.

NULL Procedure #0 Version 2

2.1.6.1. Do Nothing
SYNOPSIS

0. NFSPROC_NULL) returns ()

DESCRIPTION
This procedure does no work. It is made available in all RPC services to allow server response
testing and timing.
BUGS

D R A R mch 1 0 8 5

GETATTR Procedure #1 Version 2

2.1.6.2. Get File Attributes
SYNOPSIS

1. NFSPROC_GETATTR(fle) returns (reply)
fhandle f1le;
attrstat reply:

DESCRIPTION
If reply. status is NFS_OK then reply. attributes contains the attributes for the file given by file.
BUGS
The rdev field in the attributes structure is a UNIX device specifier. It should be removed or
generalized.

SETATTR Procedure #2 Version 2

2.1.6.3. Set File Attributes

SYNOPSIS
2. NESPROC_SETATTR(file, attributes) returns (reply)

thandle fi l e ;
sattr attributes;
attrstat reply:

DESCRIPTION
The attributes argument contains fields which are either —1 or are the new value for the attri-
butes of file. If reply. status is NFS_OK, reply. attributes has the attributes of the file after the
setattr operation has completed.
BUGS
The use of - 1 to indicate an unused field in attributes is wrong.

A D A R N = a l 1 0 0 5

ROOT Procedure #3 Version 2

2.1.6.4. Get Filesystem Root

SYNOPSIS
3. NFSPROC_ROOT() returns ()

DESCRIPTION
Obsolete.
BUGS
This procedure is no longer used because finding the root file handle of a filesystem requires
moving pathnames between client and server. To do this right we would have to define a net-

word standard representation of patentes osed, the function of 10Instead, the function of looking up the root fl

LOOKUP Procedure #4 Version 2

2.1.6.5. Lookup File Name
SYNOPSIS

4. NFSPROC_LOOKUP(which) returns (fle)
diropargs w h i c h ;
diropres reply :

DESCRIPTION

the fil chich ame is ok, reply file ed real chibute are the fle bandle and attributes for
BUGS
There is some question as to what is the correct reply to a LOOKUP request when whichname
is a mount point on the server for a remote mounted filesystem. Currently, we return the fhan-
die of the underlying directory. This is not completely acceptable, as the clients see a diferent
view of the filesystem than the server does.

D R A F T 11 March 1985

READLINK Procedure #5 Version 2

2.1.6.6. Read From Symbolic Link

SYNOPSIS
5. NFSPROC_READLINK(file) returns (reply)

thandle f1le;
In on soch (stat status) e

p a t h data;
d e f a u l t :

struct (
3 reply:

DESCRIPTION
If status has the value NFS_OK then reply.data is the data in the symbolic link given by file.
BUGS

READ Procedure #6 Version 2

2.1.6.7. Read From File
SYNOPSIS

6. NFSPROC_READ(file, offset, count, totalcount) returns (reply)
fhandle fi l e ;
u n s i g n e d o f f s e t ;
u n s i g n e d count;
unsigned totalcount;
union switch (stat status)

NES_OK:
fattr a t t r i b u t e s ;
s tr ing data <MAXDATA> ;

default:
s t r u c t (

} r e p l y ;

DESCRIPTION
Returns up to count bytes of data from the file given by file, starting at offset bytes from the
beginning of the file. The first byte of the file is at offset zero. The file attributes after the read
takes place are returned in attributes.

BUGS
The argument totalcount is unused, it should be removed.

WRITECACHE Procedure #7 Version 2

2.1.6.8. Write to Cache

SYNOPSIS
7. NFSPROC_WRITECACHE() returns ()

DESCRIPTION
Obsolete.
BUGS

WRITE Procedure #8 Version 2

2.1.6.9. Write to File
SYNOPSIS

8. NFSPROC_WRITE(file, beginoffset, offset, totalcount, data) returns (reply)
fhandle fi l e ;
unsigned beginoffset;
unsigned offset;
unsigned totalcount;
string data <MAXDATA>;
at t rs tat reply:

DESCRIPTION
Writes data beginning offset bytes from the beginning. of file. The first byte of the file is at
offset zero. If reply.status is NFS_OK then reply. attributes contains the attributes of the file
after the write has completed. The write operation is atomic. Data from this WRITE will not

BUGS
The arguments beginoffset, and totalcount are ignored and should be removed.

1 4 M a r c h 1985

CREATE Procedure # 9 Version 2

2.1.6.10. Create File
SYNOPSIS

9. NFSPROC_CREATE(where, attributes) returns (dir)
diropargs w h e r e ;
s a t t r
diropres

a t t r i b u t e s ;
dir;

DESCRIPTION
The file where name is created in the directory given by where dir. The initial attributes of the
new file are given by attributes. A reply.status of NFS_OK indicates that the file was created
and reply.file and reply.attributes are its file handle and attributes. Any other reply.status
means that the operation failed and no file was created.
BUGS
Should pass an exclusive create flag that means create the file only if it is not already there.

N R A R T 21

REMOVE Procedure #10 Version 2

2.1.6.11. Remove File

SYNOPSIS
10. NFSPROC_REMOVE(which) returns (status)

diropargs which;
s t a t status;

DESCRIPTION
The file which.name is removed from the directory given by which. dir. A status of NFS_OK
means the directory entry was removed.

BUGS

D A N T 1 4 M a r a b 1 0 9 5

RENAME Procedure #11 Version 2

2.1.6.12. Rename File

SYNOPSIS
11. NFSPROC_RENAME(from, to) returns (status)

di ropargs from;
diropargs to;
s t a t status;

DESCRIPTION
The existing fle from.name in the directory given by from.dir is renamed to to name in the
directory given by to dir. Il status is NFS_OK the file was renamed. The RENAME operation
is atomic on the server, it can not be interrupted in the middle.
BUGS

M a r a h 1 0 0 5

LINK Procedure #12 Version 2

2.1.6.19. Create Link to a File
SYNOPSIS

12. NFSPROC_LINK(from, to) returns (status)
fhandle from;
diropargs to:
s t a t status;

DESCRIPTION
Creats the file to name in the directory given by to.dir, which is a hard link to the existing file
given by from. If the return value of status is NFS_OK a link was created. Any other return
value indicates an error and the link was not created.
A hard link should have the property that changes to either of the linked files are reflected in
both files. When a hard link is made to a file, the attributes for the file should have a value for
nink which is one greater than the value before the link.
BUGS
Hard links are a peculiar property of UNIX. The concept does not generalize well.

DRAFT 1 4 March 1985

SYMLINK Procedure #13 Version 2

2.1.6.14. Create Symbolic Link

SYNOPSIS
13. NFSPROC_SYMLINK(from, to, attributes) returns (status)

diropargs from;
path to;
sat tr attributes:
stat status:

DESCRIPTION
Creates the file from.name with ftype NFLNK in the directory given by from.dir. The new filecontains the pathname to and has initial attributes given by attributes. If the return value ofstatus is NFS_OK a link was created. Any other return value indicates an error and the link
was not created.
A symbolic link is a pointer to another file. The name given in to is not interpreted by the
server, just stored in the newly created file. A READLINK operation returns the data to the

BUGS

On UNIX servers the attributes are never used since symbolic links always have mode 0777.

1A March 1085 D R A P T 9 5

MKDIR Procedure #14 Version 2

2.1.6.15. Create Directory
SYNOPSIS

14. NFSPROC_MKDIR(where, attributes) returns (reply)
diropargs where;
s a t t r a t t r ibutes;
d i r o p r e s r e p l y ;

-
DESCRIPTION
The new directory where.nome is created in the directory given by where.dir. The initial attri-
butes of the new directory are given by attributes. A reply.status of NFS_OK indicates that th
new directory was created and reply.file and reply.attributes are its file handle and attributes
Any other reply.status means that the operation failed and no directory was created.
BUGS

D R A F T 14 March 1985

RMDIR Procedure #15 Version 2

2.1.6.16. Remove Directory
SYNOPSIS

15. NFSPROC_RMDIR which) returns (status)
diropargs which;
s t a t status;

DESCRIPTION
The existing, empty directory whichname in the directory given-by which. dir is removed. Ifstatues is NFS_OK the directory was removed.
BUGS

11 March 1985 A F T

READDIR Procedure #16 Version 2

2.1.6.17. Read From Directory

SYNO NESPROCREADIR dir, cookie, count) returas (entries)
fhandle d i r ;
opaque cookie (COOKIESIZE]:
unsigned count;
union switch (stat status) {

NES_OK:
typeded undon switch (boolean valid) &

s t r u c t i
unsigned fi l e i d ;
fi l e n a m e name;
opaque cookie [COOKIESIZE] ;
entry nextentry;

}
EALSE :

s t ruc t (
} e n t r y :
b o o l e a n e o f :

d e f a u l t :
} e n t r i e s ;

DESCRIPTION

Returns a variable number of directory entries, with a total size of up to count bytes, from the
directory given by dir. Each entry contains a fileid which is a unique number to identify the file
within a filesystem, the name of the file, and a cookie which is an opaque pointer to the next
entry in the directory. The cookie is used in the next READDIR call to get more entries starting
at a given point in the directory. The special cookie zero (all bits zero) can be used to get the
entries starting at the beginning of the directory. The filed field should be the same number as
the filerd in the the attributes of the file (see fattr, 2.1.5.5). The eof flag has a value of TRUE it
there are no more entries in the directory. Valid is used to mark the end of the entries. :

If the returned value of status is NFS_OK then it is followed by a variable number of entries.
BUGS

STATFS Procedure #17 Version 2

2.1.6.18. Get Filesystem Attributes
SYNOPSIS

17. NFSPROC_STATFS(fle) returns (reply)
h a n d l e
un ion s w i t c h (s t a t s t a t u s) {

NES_OK:
s t r u c t i

unsigned
unsigned
u n s i g n e d
unsigned
u n s 1 g n e d

3 fsattr;

tsize;
bsize;
blocks;
b f r ee ;
b a v a i l :

ufiles
d e f a u l t :

s t r u c t "
} reply :

DESCRIPTION

If reply.status is NFS_OK then reply.fsattr gives the attributes for the filesystem that contains
file. The attribute fields contain the following values:
tsize The optimum transfer size of the server in bytes. This is the number of bytes the

server would like to have in the data part of READ and WRITE requests.
bsize

blocks
bfree
bavail

BUGS

The block size in bytes of the filesystem.
The total number of bsize blocks on the filesystem.
The number of free bsize blocks on the filesystem.
The number of bsize blocks available to non-privileged users.

Does not work well if a-filesystem has-variable size blocks.

1 4 March 1985 D R A F T 2 9

Mount Protocol Definition

3. M o u n t Protocol Definit ion
The Mount protocol is separate from, but related to, the NFS protocol. It provides all of theoperating system specific services to get the NFS off the ground; looking up path names, validat-ing user identity and checking access permissions. Clients use the mount protocol to get the firstfle handle which allows them entry into a remote filesystem.
The mount protocol is kept separate from the NFS protocol to make it easy to "plug in" new
access checking and validation methods without changing the NFS server protocol.
Notice that the protocol definition implies stateful servers because the server maintains a list ofclient's mount requests. The mount list information is not critical for the correct functioning of
either the client or the server. It is intented for advisory use only, for example, it to warn possi-ble clients when a server is going down.

3.1. Version 1
This version of the MOUNT protocol communicates with the NES protocol version 2. The onlyconnecting point is the jhandle structure which is the same for both protocols.

9.1.1. RPC Information

Authentication
The MOUNT service uses AUTH_UNIX style authentication only.

Protocols
The MOUNT service is currently supported on UDP/IP only.

Constants
These are the RPC constants needed to call the MOUNT service. They are given indecimal.

PROGRAM 100005
VERSION 1

Port Number
Consult the server's portmapper (reference] to find which port number the MOUNT serviceis registered on.

3.1.2. Sizes

These are the sizes given in decimal bytes of various DR structures used in the protocol.
MNTPATHLEN 1024

The maximum number of bytes in a pathname argument.
MNTNAMLEN 255

The maximum number of bytes in a name argument.
FHSIZE 32

The size in bytes of the opaque file handle.

DRAFT 14 M a r c h 1 9 8 5 .

Mount Protocol Definition

9.1.3. Basic Data Types

8.1.8.1. fhandle

typedef opaque fhandle [FHSIZE] ;
The jhandle is the file handle that the server passes to the client. All file operations are done
using file handles to refer to a file or directory. The file handle can contain what ever informa-
tion the server needs to distinguish an individual file.
This is the same as the fhandle XDR definition in version 2 (section 2.1) of the NFS specification.

3.1.3.2. Jhatatus

typedef union switch (unsigned status) {

fhandle d i r ec to ry ;
default:

struct 1}
}

If a status of zero is returned the call completed successfully and a file handle for the directory
follows. A non-zero status indicates some sort of error. In this case the status is a UNIX errno.

8.1.9.9. dirpath

typedef string dirpath<MNIPATHLEN>;

The type dirpath is a normal UNIX path name of a directory.

9.1.9.4. name
typedef s t r ing name<MNTNAMLEN>;

The type name is an arbitrary string used for various names.

3.1.4. Server Procedures

The following sections define the RPC procedures that are supplied by a MOUNT server. The
RPC procedure number is given at the top of the page along with the name and version. The
SYNOPSIS field has the format:

‹ p r o c #>, ‹ p r o c name> (<arguments>) r e t u r n s (‹ r e s u l t s >)
‹ argument declara t ions>
« results declarations>

a mes oret at the fe, ere name is the aame the predure, reument i in li siof the
" a r c h 1 9 8 5 DRAFT 31

Mount Protocol Definition

XDR argument declarations and results declarations. The DESCRIPTION field tells what theocedus it xisted to do and how is arguments and results are used. The BUGS feld liste

D R A F T 1 4 M a r c h 1 0 9 5

NULL Procedure #0 Version 2

3.1.4.1. Do Nothing

SYNOPSIS
0. MNTPROC_NULL) returns ()

DESCRIPTION

This procedure does no work. It is made available in all RPC services to allow server response
testing and timing.
BUGS

1A K A a n n h 1 0 0 5 D R A F T 2 2

MNT Procedure #1

3.1.4.2. Add Mount Entry

SYNOPSIS
1. MNTPROC_MNI(directory) returns (reply)

dirpath dirname;
fhstatus reply;

DESCRIPTION

Version 1

mounting dirname.
BUGS

D 0 . m m 1 1 0 0 0 -

DUMP Procedure #2 Version 1

3.1.4.9. Return Mount Entries

SYNOPSIS
2. MNTPROC _DUMP() returns (mountlist)

union switch (boolean more_entries) {
TRUE:

struct i
name
dirpath
mountlist

hostname;
directory;
nextentry;

FALSE:
struct (

} mountlist;
DESCRIPTION

directory pair.
BUGS

Return the list of remote mounted filesystems. Mountlist contains one entry for each hostname,

UMNT

3.1.4.4. Remove Mount Entry
SYNOPSIS

3. MNTPROC_UMNI(directory) returns ()
dirpath directory;

DESCRIPTION
Remove the mount list entry for directory.
BUGS

Procedure #3 Version 1

C l e t e n o r .

UMNTALL Procedure #4

3.1.4.5. Remove All Mount Entries
SYNOPSIS

4. MNTPROC_UMNTALL) returns ()

DESCRIPTION
Removes all of the mount list entries for this client.
BUGS

Version 1

14 March 1985 DRAFT 3 7

EXPORT Procedure #5 Version 1

9.1.4.6. Return Export List

SYNOPSIS
5. MNTPROC _EXPORT() returns (exportlist)

union switch (boolean nore_entries) {
TRUE:

struct {
dirpath filesys ;

typedal unton switch (boolean more groups)
struct {

name
groups

grname;
nextgroup:

FALSE:
struct (

} groups;
mountlist nextentry:

FALSE:
struct ")

j exportlist;
DESCRIPTION
Returns in exportlist a variable number of export list entries. Each entry contains a filesystem
name and a list of groups that are allowed to import it. The filesystem name is in
exportlist.filesys, and the group name is in exportlist.groups.grname.
BUGS
The exportlist should contain more information about the status of the filesystem, such as a
read-only flag.

38 D R A F T 14 M a r c h 1985

Index

A
Atime, 8
attributes, 10, 14, 18, 21, 25, 26
attrstat, 8, 10
AUTH_NONE, 1, 4
AUTH-UNIX, 1, 4, 4, 30

B
beginoffset, 20
Blocks, 8
Blocksize, 8
bsize, 29, 29, 29

C
cookie, 28
COOKIESIZE, 5
count, 2, 18, 28
CREATE

Version 2, 21
Ctime, 8

D
data, 18, 20
dir, 10, 28
directory, 31, 35, 36
dirname, 34, 34
diropargs, 10, 10
diropres, 10, 10
dirpath, 31, 31
DUMP

Version 1, 35
E

entries, 28
entry, 28
eos, 28
EXPORT

Version 1, 38
exportlist, 38
exportlist.filesys, 38
exportlist.groups.grname, 38

F
fattr; 8, 8, 8
fhandle, 7, 7, 7, 30, 31
FHSIZE, 5, 30

Thstatus, 31
file, 10, 13, 14, 17, 18, 20, 29
fle1, 2
file2, 2
Fileid, 8, 28, 28, 28filename, 0, 9
from, 24
from.dir, 23, 25
from.name, 23, 25
Fsid, 8
Stype, 7, 7

G
GETATTR

Version 2, 13
Gid, 8

H
hostname, 35

LINK
Version 2, 24

LOOKUP, 3, 4
Version 2, 16

M
MAXDATA, 5
MAXNAMLEN, 5
MAXPATHLEN, 5
MKDIR

Version 2, 26
MNT, 15

Version 1, 34
MNTNAMLEN, 30
MNTPATHLEN, 30
Mode, 8
Mountlist, 35
Mtime, 8

N
name, 31, 10, 28, 31
NFBLK, 7, 8
NFBLK., 8
NFCHR, 7, 8, 8
NFDIR, 7, 8

ー ュ ー

NFLNK, 7, 8, 25
NFNON, 7, 8
NFREG, 7, 8
NFS_OK, 6
NFSERR_ACCES, 8
NFSERR_DQUOT, 7
NFSERR_EXIST, 6
NFSERR_FBIG, 8
NFSERR_IO, 6
NFSERRJISDIR, 6
NFSERR_NAMETOOLONG, 7
NF SERR_NODEV, 6
NFSERR_NOENT, 8
NFSERR_NOSPC, 7
NFSERR_NOTDIR, &
NFSERR_NOTEMPTY, 7
NFSERR_NXIO, 6
NFSERR_PERM, 6
NFSERR_ROFS, 7
NFSERR_STALE, 7
NFSERR_WFLUSH, 7
Nlink, 8, 24
NULL, 4

Version 2, 12, 33

offset, 18, 20

path, 9, 9

R
Rdev, 8, 13
READ, 5, 29

Version 2, 18
READDIR, 3, 5

Version 2, 28
READLINK, 25

Version 2, 17
REMOVE

Version 2, 22
RENAME

Version 2, 23
reply.attributes, 13, 14, 16, 20, 21, 26
reply.data, 17
reply.directory, 34
reply.file, 16, 21, 26
reply.fsattr, 29
reply.status, 13, 14, 16, 20, 21, 21, 26, 26, 29, 34
RMDIR

Version 2, 27
ROOT

Version 2, 15

sattr, 8, 9
SETATTR

Version 2, 14
Size, 8, 9
stat, 5, 6
STATFS

Version 2, 29
status, 2, 2, 2, 10, 17, 22, 23, 24, 25, 27, 28, 31SYMLINK

Version 2, 25
T

timeval, 7, 7
to, 25, 25
to.dir, 23, 24
to.name, 23, 24
totalcount, 18, 20
Type, 8, 8, 8, 8, 8, 8, 8

U
Uid, 8
UMNT

Version 1, 36
UMNTALL

Version 1, 37

Valid, 28

W
where.dir, 21, 26
where.name, 21, 26
which.dir, 16, 22, 27
which.name, 16, 22, 27
WRITE, 5, 29

Version 2, 20
WRITECACHE, 7

Version 2, 19

