sun microsystems, inc.
internal memorandum

To: File

From: Bill Joy, x7254; Steve Kleiman x7295
Subject: NFSBOX: Design Overview

Date: February 19, 1985

Introduction

Goals

The NFSBOX Is designed to be a fast, autonomous NFS server which can run with less
hardware than a full UNIX implementation.

Speed is achieved by having simple data structures and a runtime environment tuned to
i/o processing. By running NFSBOX in a standalone (non-UNIX) environment, UNIX CPU
and memory overhead is eliminated, and simplifications not possible under a full-function
UNIX are possible.

Autonomy is the ability to make independent decisions. It is achieved in NFSBOX by
having labels on each disk sector, and always giving precedence to information In the
disk label over any other information.

A NFSBOX is easler to administer than a UNIX~based NFS server because it can run with

the code in prom’s, and does not require user-intervention except In the case of
hardware failure.

Data Stfuctures

Free Storage

A NFSBOX disk is organized into 8.5kb blocks, consisting of a 512 byte header and 8kb of
data At the pegin.nln'g of each disk are two coples of the free list for the disk, each
containing a 2*16 bits indicating which blocks are available. This allows disks up to 2729

?yte?_ i? size. The ‘‘pack label”’ for the disk drive is contained in the label blocks for the
ree list.

#define HEADER_SIZE 512
#define BLOCK_SIZE 8192

typedef struct freemap block

int bits [BLOCK_SIZE/sizeof (int)] :
} FREEMAP;

Directories

A NFSBOX directory is a file, which contains an array of 25
record containing information about the file and thg file'si_a!:nytee. enires: Each eniryls a




#define NDADDR 12
#define NIADDR 3

typedef struct directory_block ({
char name [128] ;
int namelen;
u_short mode;
short uid;
short gid;
long size
struct timeval atime;
struct timeval mtime;
struct timeval ctime;
daddr_t db [NDADDR] ;
daddr_t ib[NIADDR] ;
long flags;
long blocks;
long gen;

}s

File Data
File data is stored as in UNIX 4.2, with direct and indirect data blocks.

Labels

Each disk block has a label, indicating that it Is either a free map block, a directory block,
a file block, an indirect block, a double indirect block, a data block, or free. The label is
the final arbiter of the status of the block.

The label also contains the file’'s high—level name, and the disk address of the directory
block in which the name is stored. This information Iis used to reconstruct directory
blocks which are lost.

Each file is always allocated at least one block, and it is the disk address of this block
which is the primary low-level name (fhandle) for the file.

The size of a file is stored in each label_block. Files which are active may not yet have
their size fully reflected in their directory entries. In this case the sizes reflected in the last
few data blocks must be reflected back to the main directory entry before the length
there is correct. After a crash, this may require some extra work (to be described).

typedef struct label_block ({

char name [128] ;
int namelen;
daddr_t dirblock;
int dirslot;
enum label_type {
freemap,
directory,
file,
indirect,

doubleindirect,




free

} type;
int size;
daddr_t parent; /* for directory */
} LABEL_BLOCK;
Operations
Formatting

Formatting a disk requires writing the free maps and all the headers to mark ali the blocks
on the disk fre'?. In addition a ‘‘root directory’’ for the disk is created with block #2 as Its
first data block.

Block Allocation

The allocation map on the disk Is always a superset of the avallable space. Allocation
requires selecting a free bit from this map and checking the disk lable to insure that it is
really free. This means that the map is always a superset of the space available. WHY
TWO COPIES OF THE MAP?

Block Free

Consider removing a file. Allocate a block, clear it, and then collect the set of bits which
are the blocks in the file. Then write this free map out. Then mark the file as ‘‘free In
progress’’. This committs the deletion of the file. Then read each block of the file and
rgarklthe block as free if it was in the file. Then remove the *‘‘free in progress’’ mark on
the file.

File Allocation

A file Is allocated by finding a slot in a directory and initializing it as *‘create in progress’’
and then allocating a disk block and writing it out pointing back at the file. This is the
committ. We then clear the ‘‘create in progress’’ bit.

File Free

See block free. Then erase the directory entry.

Directory Allocation

Same as file allocation.

Directory Free

Same as file allocation.
Continuation Afier Crashes

Block Allocation in progress




A file which Is actively aliocating blocks is marked allocation in progress. If we are
allocating within 100 biocks of the last block in the file then we don’t require that the
direct/indirect pointer be immediately updated, but require these blocks to be scanned
on first access when restarting after a crash. The search can be restricted to free disk
blocks, and each free block need be examined at most once.

Block Free in Progress

Blocks which are In the free list may not be freed, because the file they are in is deletion
in progress. If we find a block in the free list which Is not actually free on the disk we
check the directory entry for that file. If the directory entry indicates free in progress, we
start up an asynchronous operation to finish freeing the file.

File Allocation in Progress

Allocating a file is committed when the first block Is allocated. If we discover an entry that
is marked allocation in progress, we finish it if the block is allocated, or discard it if the
block is not.

File Free in Progress

If we discover a file which is marked free in progress, we queue an asynchronous
operation to redo the free operation.

Hard Operations

Rename ‘

Requires changing all the data blocks. Similar to remove.
Link

This is hard.

Small file space optimizations
Must split blocks. MESSY.






