
sun microsystems, inc.
internal memorandum

To:

From:

Date:

File

Bill Joy, x7254; Steve Kleiman x7295
Subject: NFSBOX: Design Overview

February 19, 1985

Introduction

Goals
h e NFSBOX is designed to be a fast, autonomous NFS server which can run with lessardware than a full UNIX implementation
Speed is achieved by having simple data structures and a runtime environment tuned tolo processing. By running NFSBOX in a standalone (non-UNIX) environment, UNIX CPUand memory overhead is eliminated, and simplifications not possible under a full-functionUNIX are possible.
Autonomy is the ability to make independent declsions. It is achieved in NFSBOX byhaving labels on each disk sector, and always giving precedence to information in thedisk label over any other information.
A NFSBOX is easier to administer than a UNIX-based NFS server because it can run withthe code in prom's, and does not require user-intervention except in the case ofhardware failure.

Data Structures

Free Storage

containing a 2̂ 16 bits indicating which blocks are available.bytes in size. The "pack label"' for the disk drive is contained in the label blocks for thefree list.

512
8192

cypeder s t r u c t f reemap_block
} FREEMAP;

b i t s [BLOCK_SIZE/sizeof ( i n t ) ] ;

Directories
A NFSBOX directory is a file, which contains an array of 256-byte entries. Each entry is arecord containing information about the file and the file's name.

- 1 -



#define NDADDR 12
# d e fi n e NIADDR 3

typedef struct directory_block (
c h a r name [128] ;
i n t namelen;
u s h o r t mode;
short uid;
s h o r t g i d ;
long s i z e
s t ruc t timeval atime;
s t r u c t t i m e v a l m t i m e ;
s t r u c t t i m e v a l c t i m e ;

long
long
long

fl a g s ;
blocks;
gen;

} ;

File Data
File data is stored as in UNIX 4.2, with direct and indirect data blocks.

Labels
Each disk block has a label, indicating that it is elther a free map block, a directory block,
file block, an indirect block, a double indirect block, a data block, or free. The label i:
h e final arbi ter of t h e s t a t u s of t h e block

The label also contains the file's high-level name, and the disk address of the directoryblock in which the name is stored. This information is used to reconstruct directory
blocks which are lost.
Each file is always allocated at least one block, and it is the disk address of this block
which is the primary low-level name (fhandle) for the file.

The size of a file is stored in each label_block. Files which are active may not yet have
heir size fully reflected in their directory entries. In this case the sizes reflected in the last
few da ta blocks must b e reflected back to the main directory entry before t h e length
there is correct. After a crash, this may require some extra work (to be described).

typedef struct label_block {
cha r name [I28] ;
in t n a m e l e n ;
daddr_t dirblock;
int d i r s l o t ;
enum l a b e l t y p e

freemap,d i r e c t o r y ,
fi l e ,
i n d i r e c t ,
doubleindirect ,

- 2 -



f r e e
• type ;
i n t size;daddr_t parent;

1 LABEL_BLOCK;

Operations

* f o r d i r e c t o r y */

Formatting
on the disk rels. airion attire ot directory or the die is creas d win balk a s kgfor the disk is created with block #2 as itsfirst data block.

Block Allocation
The allocation map on the disk is always a superset of the avallable space. Allocation
requires selecting a free bit from this map and checking the disk lable to insure that it isreally free. This means that the map is always a superset of the space available. WHYTWO COPIES OF THE MAP?

Block Free
Consider removing a file. Allocate a block, clear it, and then collect the set of bits which
are the blocks in the file. Then write this free map out. Then mark the file as "free in

This committs the deletion of the file. Then read each block of the file andmark the block as free if it was in the file. Then remove the "free in progress" mark onthe file.

File Allocation
A file is allocated by finding a slot in a directory and initializing it as "create in progress"
nd then allocating a disk block and writing it out pointing back at the file. This is the
o m m i t t . We then clear the " ' c r e a t e in p r o g r e s s " ' bit.

File Free
See block free. Then erase the directory entry.

Directory Allocation
Same as file allocation.

Directory Free
Same as file allocation.

Continuation After Crashes

Block Allocation in progress

- 3 -



A file which is actively allocating blocks is marked allocation in progress. If we are
allocating within 100 blocks of the last block in the file then we don't require that the
direct/indirect pointer be immediately updated, but require these blocks to be scanned
on first access when restarting after a crash. The search can be restricted to free disk
blocks, and each free block need be examined at most once.

Block Free in Progress
Blocks which are In the free list may not be freed, because the file they are in is deletion
in progress. If we find a block in the free list which is not actually free on the disk we
check t h e directory entry for that file. If the directory entry indicates free in progress, we
start up an asynchronous operation to finish freeing the file.

File Allocation in Progress

ake allo i on progress a first blurtis alocate lowed on rare it tha
block is not.

File Free in Progress

opera lin do red tie tic operatored free in progress. we queue an asynchronous

Hard Operations

Rename
Requires changing all the data blocks. Similar to remove.

Link
This is hard.

Small file space optimizations
Must split blocks. MESSY.

- 4 =




