sun microsystems, inc.
internal memorandum

To: File

From: Bill Joy, x333

Subject: NFS preliminary benchmarking
Date: September 6, 1984

Dan Walsh and I spent about an hour benchmarking a system where he had just got
caching to work, on an idle network between two servers. We attempted a rough
breakdown of the protocol overheads involved. Here is a report:

Time of trivial remote call: fstat

We first measured the time it took to do a loop over a 1000 fstat system calls on a file
descriptor which was an open file on the file server. This took 29 seconds, giving us a
time of 29 milliseconds per call. When run locally, this system call takes about 700
microseconds.

A guess at time breakdown of a trivial call

From the fact that the server was about 60% CPU busy while serving the fstat operations
we estimate the the server is spending about 17 milliseconds per request. We believe that
the Ethernet transit time for the request and the response is almost 0. We beliefve that
the server machine will do a context switch from an idle state io the server process when
the request arrives and that the client machine will context switch back to the client
when the response arrives. Guessing that a context switch takes about 1 millisecond, this
accounts for 20 milliseconds, and we guess that the remaining 9 milliseconds is in the
protocol time on the client, giving: ~

client syscall ) 1
nfs code on client 9
client context switch 1

server context switch 1
server protocol 17

Read timing

We next wrote a program which did a read of a file randomly seeking so as to avoid all
the caches. The program did 4kb requests. During the operation the server was 46% busy
and we did 10 disk i/o operations per second, for a server service time of 46 milliseconds
per request, and a total service time of 100 milliseconds per request. This gives us a
guessed breakdown, incremental from that above

client syscall

nfs code on client )
client context switch
client data processing

(rough est)

(% A =t \D et

ether transit time -




server context switch 1

server basic protocol 17
server disk latency 33 (100 - rest!?1)
disk protocol additional 28

With readahead the server utilization goes up to nearly 80%, but the rest is idle because
the client apparently cannot consume the data. During the experiment with read-ahead
the client CPU is _ % busy.

Additional measurements

One distressing measurement was that of a ‘*stat(”.”)"’, which took 96 milliseconds,
apparently 3 remote operations. This means that a stat call is taking nearly 100* longer
over the net than locally. We believe that this could be done in one remote operation, or
30 milliseconds, without much trouble. A ‘‘stat(”./.”)" takes only 132 millisecodns, or
4 remote operations, showing the minimal increment in an additional pathname
component.

Things to do

1. We need to reduce the time of the trivial operations as much as possible. In particular,
commands like ‘‘make’’ do tons of stats; with then running at 1/10 sec per, the
performance will be miserable.

2. CPU time is the bottleneck at both the server and the client machines. Improvements
which can be anticipated include reducing the RPC protocol overhead (inline XDR
expansion, and other wizardry should help her), and especially reducing the number of
messages sent whenever possible (e.g. in stat).

3. Gprofing both the server and client sides to find bottlenecks during the read and write
experiment should help a lot.

Conclusions

The CPU time is more of a bottleneck than even was anticipated in my previous memo
about server performance. We have a lot of work to do to get from the current 46
milliseconds per 4k request to the 20 milliseconds which the V kernel people believed
was possible on Sun—1 like hardware.




