
Networked File System Project Plan
Bob Lyon

Company Confidential

ABSTRACT

Herein lies a first cut of the networked file system (nfs) project plan. The
document contains a brief product description, an implementation schedule an
immediate assignments for the project members

I n t r o d u c t i o n

This file is pumpkinseed: "blyon/nfs/memos/nfs_project_plan.txt

Produc t Description
The networked file system allows network clients to gain byte level access to (shared) files on a
remote system.

The pis diflers from nd (Sun's "network disk") in that nd only makes a disk (not a file system)
available via a simple protocol. The nd client then builds its own is given the disk. Access con-
trol of disk areas is based solely on the requester's IP address. Since IP addresses are assumed to
be unique, this disallows file sharing by the nd server. The use of IP address as the basis of access
control has two other draw backs: first, a malicious or buggy piece of network software can easily
trash a user's disk just by supplying an IP address; second, it violates the protocol layering con-
cepts and necessarily makes changing a client's IP address or client's nd server difficult.
Since the server only emulates a disk and not a file system, there is no caching on the server side.
The nfs differs from rcp (4.2 based remote copy) in that rep only allows data transfer in units of
files. The client of rep supplies a complete file-path name and receives a stream of bytes in
return; it does not use the file system to walk down the directory tree to its desired file. Access
control is based on the client's name and the client's host's name. Rep is not transparent to the
user of system; nis will be transparent.
The nis will allow a client to read or modify data based on opaque file handles, byte ofisets, and
byte lengths. The file handles will be acquired via a series of get handle calls whose inputs are
directory file handles and file names. The nfs (for the first t ime presents the network client with
a complete file system.
Access control will be (must be) done on every nfs server operation, though its impact on perfor-
mance will be kept to a minimum. Clients will be identified via client's host machine name,
client's (Unix) uid, and an array of the client's (Unix) gids. Uids and gids are relative the client's
machine when generated but are relative to the server when used in access control. This implies
that all machines that access or implement the nfs on an internet must have a uniform Unix uid
and gid space. (Unlike nd or rep, the spc based nis has authentication parameters formally
separated from the server protocols (in this case, the nfs) so that newer/better/different forms of
network authentication can be introduced with little or no impact on the protocol or clients.)
The nfs will augment various Unix caching philosophies in the following manners:
- The ufs client machines will continue to implement read ahead and write behind.

March 2, 1984



NFS Project Plan - 2 - DRAFT

- The client nís machines will keep an "internal node" directory cache in order to avoid repeated
calls to lookup. The cache will be (in)validated when looking-up the last element of a path-name.
- The server will perform data read ahead and write through.
- The server will maintain a high performance authentication credentials cache that will allow
fewer authentication bits to be passed per remote access.
Finally, it should be noted that the nis is not a replacement for nd. In fact, nfs code must be
able to coexist with nd.

Design (statements and issues)
The following is a fairly high level design of the nfs. The high level design is based upon Bill
Joy's "inode evolves to vnode/vis" file system proposal.

U N I X FS FUCTIONS

LUNODEKdisectay cacke
D E V

LOCAL
VFS

REMOTE
VES

R P C

NETWORK

长 P C

S E R V I C E

fi l e cacke

a u t h e tiation cache

S T A T E E _
STATELESS LIGHT

WEIGHTPROCESSES

L E S K Eder, block noI cache (bia))
D I S K

March 2, 1984



NFS Project Plan - 3 - DRAFT

User view of deliverables
So far, this document has discussed the architecture of the nis. This section discusses what the
customer sees and how s/he uses it. Since the nis is mostly transparent to C programs, using it
should be trivial.
The delivered nfs will consist of a heavily modified Unix kernel (that implements all of the sub-

systems drawn in the figure above) along with various utility commands that enable the new func-
The functionality is best demonstrated via the following examples. The

command names, syntax and parameters given below are only meant as examples are not to
taken as the exact specifications of the end product.
Example 1: If a customer has booted his Unix machine and decides that the machine's file system

should be made accessible to the internetwork, he would execute the following command:

exportis 3
The command activates a nfs "server" and devotes three demons to the task of serving network
clients.
The machine's kernel will now execute file system requests (reads, writes, ...) for network clients
is if they were logged onto the machine. The clients are identified by uids and gids and acces:

control will be based upon these ids. However, network clients with uids of zero ("root") will no
be treated as the system's super user.
If the customer decides that his machine's file system should no longer be available to the inter-
net, he would execute the command

unportfs

which (abruptly) turns off the nfs "server" on the machine. Any network clients who were access-
ing files on the machine will now fail. With respect to the network client, the effects of the
unportis command are very similar to those of a forced umount.
Some fine points are worth noting here:
- exportis and unportfs are super user commands.

- It does not matter whether the machine is diskless (nd based) or diskfull; both configurations
are compatible with the nfs server.
- It is believed that public, timeshared systems will export their file systems and that personal,
high performance workstations will not, although the nfs design will not disallow the latter.
- Since personal machines (most likely) will not export their file system, (casual, non-transparent)
access to their files can still be accomplished via rep or rlogin.
- It is expected that the exportfs command will executed semi- automaticly following booting via

init.
- The project will investigate and publish the optimal number of demons to devote to a dedi-
cated nfs server, like Sun's titan machine.
Example 2: After booting a machine (with a small disk), a customer wishes to be able to access
(read and write) source files on a remote server that has exported its file system. The remote
machine's name is "krypton" and it keeps source on /us/src. Furthermore, assume the machine
needs a huge amount disk for t m p and that the area is allocated on another server, "titan", in a
directory /tmp/client_temps/client_foo. The customer may invoke the following commands:

netmount krypton:/usr/src /ust/sIc
netmount titan:/tmp/client_temps/client_foo /tmp
cp /usr/src/bin/ls.c /tmp

The netmount command lets a customer associate a local directory (/tmp) with a remote direc-

tory on a named server (titan:/tmp/client_temps/client_foo). After the netmount commands, all
file system access is transparent to the user programs. In this example, the cp command
eflectively copied bits from krypton and placed them on titan (provided the user had appropriate

March 2, 1984

- -



NFS Project Plan - 4 - DRAFT

access rights). The commands
vi /usr/src/bin/cat.c
g/cat/s/cat/dog/g

or

touch /usr/src/bin/cat.c
effectively edits the file in-place on krypton, though processing is done on the local machine.
Again, some fine points need noting:
- The machine may be diskless (nd based) or diskfull.
- In the first release of nis, swap areas cannot be netmounted.
- Only super user may invoke the netmount command and the effects apply to the whole
machine.
- It is assumed that the netmount command will be invoked after booting via init, though later
netmounts are allowable.

Limitations (and what's broken)
Unlinking an open file will cause access to that file to be revoked. There is some number of Unix
programs that will break due to this feature.
It a remote server becomes unavailable (due to a crash or an unportfs) the client software will
receive a hard io error.

Actual inumbers will be made visible from the server to the client. However, inumbers will never
be passed from client to server. Therefore, programs that inspect inumbers (like ls -i or ep)
should continue to work. However, since inumbers only contain device and block number (and
not nis server number), comparison of inumbers is meaningless (cp could break). Some kind of
nis server number may be (... may have to be) hacked into numbers.
The Unix authentication parameters are unencrypted and are fairly easy to intercept of forge.
The special id "root" will be treated as "other" on the file server. In some cases this will disallow
accesses for remote superusers that are allowed for the normal user.
Remote devices will not be accessible through the nfs. The nfs will only deal with real files and
not with special files. (This also means that swap areas will not be supported by the first release

of the nfs.)
Programs that make unique files by checking for a certain file's existence and making it if it is not
there could fail when using the nfs. This is not considered important since most of these files are
created in private, non-networked file systems.
The project recognises the need for a lock manager. However, a lock manager service is con-
sidered outside the scope of the nfs, proper. No lock manager service will be delivered with the
first released of the nfs.

Nis performance expectations should be tempered. Performance equal to nd is desirable. But
given the added functionality of nfs, this goal is not very realistic. The goal could be reached if
all tuning work on nd stops immediately and much effort is poured into nis performance. The
project expects to do the latter.
The nis authentication and access control assumes a uniform Unix uid and gid space. This

assumption can make administration of large internets very difficult. Connection of two previ-
ously disjoint internets will cause an administrative nightmare. This form of authentication was
chosen so that the nis can be delivered in a reasonable time frame in the absence of

internetwork-wide authentication.

March 2, 1984

•



NFS Project Plan - 5 - DRAFT

Schedule
A time-less schedule of major tasks and their dependencies is presented in this section. A time
line for these tasks is presented at the end of this document. Although caches and caching stra-
tegies are very important in the end product cache design and implementation is not included in
the various task. (Note that cache design is not explicitly excluded, either.) The schedule reflects
the project members' desire to show feasibility ASAP without necessarily addressing performance
a t the same t ime.

a: Implement and debug vnode/local/lfs system in a Unix user process using a raw file system.
al: Well defined interface to LFS must be specified.
a2: Well defined interface between node and *vfs must be specified.

b: (depends on a) Port vode/local/Ifs system to the kernel.
c: Specify and implement Unix style authentication parameters.
d: Port p c to the kernel.
e: Choose a transport protocol for the nfs.
f: Specify client - server nís protocol.

g: Design and implement kernel-level-light-weight / user-level-regular processes.
h: (depends on al, c, e, f) Implement NFS Service as a user process.
i: (depends on h, g) Port NFS Service to the kernel and take advantage of light-weight processes.
j: (depends on a, a2, c, e, f) Implement NFS Client ("remote nodes") in a user process.
k: (depends on b, j) Port NFS Client to the kernel.
w: Adapt to any nfs-project-external kernel system changes (like the kernel VM rework).
x: Fix parts of the kernel that break due to (a). For example, shared text uses bio which is
bound to change.

y: On-going transport protocol performance improvements.

z: Implement and retro-fit any caches not implemented by any other tasks.

Immediate assignments

The following is a list of sub-tasks, their short description, who the task is assigned to and for
how long, and what (if any) issues prevent the task from being completed. Time estimates are
best guesses and assume that the person devotes 100% of his time to the task.
1) DFS Protocol Specification (pugs). This document describes all "remote procedures" imple-
mented by a nis server and used by a client. The spec is written in English and Sun-NDR. It
describes all procedures' arguments, results and semantics. Time: 2 weeks. Dependency: Due to
performance considerations, the choice of kernel-level p c transport protocol will affect this higher

level protocol (see # 5). (The transport protocol choice should only affect the specifications of
two procedures - read and write.)

2) RPC kernel port (dan and rusty with help from blyon). The implementation of RPC/UDP/IP
must be ported from Unix user space to kernel space. (RPC is composed of three connected pack-

ages - ndr, authentication and rpe_message. Each package has a client side and a service side.)

force this issue. Time: 4 weeks. Dependencies: None; however, "Unix authentication" will even-
tually affect some of the code (see # 4).

3) Unix user level / raw fs, node implementation (sk and pugs). The first cut of the inode
evolves to n o d e implementation will be written and debugged at Unix user level; it will access a

raw file system. The implementation will then be ported to the kernel. The task has three major

pieces - vnode level (replaces inode and knows about various file system implementations), Ifs (a

March 2, 1984



NFS Project Plan - 6 - DRAFT

local disk file system), and device access (a local device file system). Time: 13 weeks, include ker-
nel port. No dependencies.
4) Unix Authentication (blyon). Unix uids and gids must be passed from client to server in order
for the server to perform file access control. The server then returns to the client a short-hand
handle which the user can use on subsequent calls. This just involves writing a new flavor of
authentication for pc clients and rpe servers. As usual it will first be implemented at user level,
then ported to the kernel (see task # 2). Time: 2 weeks. No dependencies.
5) Alternative transport for nís rpc (pugs, dan, rusty, blyon). UDP may not be the best way to
move data among clients and servers. Since this affects # 1, the issues must be resolved in due
haste. Time: 1 weeks. No dependencies.
6) dg place holder. David Goldberg has no tasks directly connected with the networked file sys-
tem. We hope to use David's talents in related areas such as (a) using user-level rpc and provid-
ing blyon with feed-back, (b) producing better rpc/ndr documentation, (c) providing
the yellow pages which is needed long term, (d) investigating remote system performance moni-

tors, (e) on-going internetwork routing issues, and (f) provide nfs help wherever David or manage-
ment deem necessary.

P r o j e c t R e q u i r e m e n t s

1) Managing source changes to the Unix kernel will be hard enough just within the nis project.
We do not wish to coordinate with other projects (such as the memory management rework).
Therefore an additional integration (timesharing / filesharing) machine, "Dufus" is needed. Dufus
source will be copied from Krypton (the current integration machine) after the merge of frozen-
out source code with 1.1 source code. The "join" of Dufus and Krypton is not well understood at
this point.
Anticipated disk storage requirement for Dufus is one 330 OR two 168's OR one Eagle.
2) When the vode - Ifs implementation is ported to the kernel, the porters will require machines
with their own local disks that are trashable. It is believed that Steve Kleiman will require his
own disk-full machine. Pugs and dan currently have disk-full machines; blyon, dg and rusty have
diskless machines.
3) Some stages of testing and performance measurement will require "lab" machines. The project
members assume that two SQA lab machines will always be available to them. Lab conflicts with
other projects can be resolved by acquiring more hardware or delaying one or both projects.
4) As more pieces of the nis get implemented performance measurement and analysis become
increasingly more important. In many cases, "gprofing the kernel" will be adequate. However,
this has the unfortunate side effects of consuming a non-trivial amount of cpu time and providing
an all-or-nothing approach to monitoring. The project members strongly recommend that Sun
acquire a hardware monitor so that critical legs of the nfs kernel can be measured without
interference.

A Modest Proposal
Blyon suggests that each project member take time once a month to send a "progress report" to
management and all project members. The report should be an electronic message that takes no
more than a page of paper to print and should not be composed via *troff. No more than one hour
should be devoted to the message.
The message has three sections - Progress, Plan, and Problems. The composer should state what
he has accomplished since his last report, what he intends to accomplish in the next month, and
what prevented (or prevents) him from making progress.
Digestion of several month of reports typically uncovers problem areas that are never immediately
apparent.

March 2, 1984



FEB
27

MAR
1

2
M

AR
26

APRI了

APR23
MAY

MAY.
JUN

Z l

JUN18
JUL2

JUL16
JUL3

0

PUGS.
a

D
a

2

SRK
a

D
9

2

DAN
o

fea

RUSTY...
o

C
.

BLYON


