
87

Towards a Distributed File System

Walter F . Tichy

Zuwang Ruan

Department of Computer Science
Purdue University

West Lafayette, IN 47907
Net: tichy@purdue

ABSTRACT

This paper describes IBIS, a distributed file system for a network of
UNIX machines. IBIS provides two levels of abstraction: file access tran-
sparency and file location transparency. File access transparency means that
all files are accessed in the same way, regardless of whether they are remote or
local. File location transparency hides the location of files in the network.
IBIS provides a single, location transparent, hierarchical file system that spans
several machines. IBIS exploits location transparency by replicating files and
migrating them where they are necded. Replication and migration improve
file system efficiency and fault tolerance.

This paper reports on the design, implementation, and performance of the
access transparency level, and describes the design of the location tran-
sparency level.

1. Introduction

IBIS is a distributed file system for a network of UNIX machines. The purpose of IBIS

is to provide a uniform, UNIX-compatible file system that spans all nodes in a network. The

novel features of IBIS are file migration and replication, which improve the efficiency of file

access by placing files near the network nodes where they are used. IBIS is also implemented

with a new, decentralized protocol for file access. A forerunner of IBIS is STORK [1], which

demonstrates the feasibility of file migration. IBIS is being built as part of the TILDE project

[2], whose goal is to integrate a cluster of machines into a single, large computing engine by

hiding the network.

IBIS has 2 levels of abstraction. The first level provides file access transparency (also

called system call transparency). File access transparency is achieved if file access primitives

like open, close, read, and write operate on any file in the network, regardless of the location

of the file. Access transparency hides the access method for remote files; it does not hide the

location of files.

88

The second level of abstraction provides file location transparency, which frees the user
from remembering at which host a file is located. Placement of files becomes the responsibility
of the file system, permitting it to exploit placement strategies that improve efficien.:y. File
migration is a strategy that improves access time by placing files near the nodes where they are
read and written. File replication is a strategy that creates copies of files to improve the
efficiency of read accesses as well as the fault tolerance of the file system.

The next section describes the access transparency layer of IBIS. Besides presenting
design and implementation, we discuss an authentication mechanism that guarantees the secu-
rity of remote access, and provide performance measurements. Section 3 describes the design
of the location transparency layer of IBIS.

2. File Access Transparency

We have extended all UNIX file access primitives to operate on both local and remote
files. For cxample, open accepts a filename of the form [< hostname> :]< pathname> . If < host-
name> is missing or the same as the current host, open executes a normal system call for
opening the file and passes back the returned, local file descriptor. If the file is remote, open
communicates with a server process on the remote machine to open the desired file remotely.
Open returns a remote file descriptor in that case. All further operations on the returned file
descriptor interact with the local file system or the remote server, as the case may be. Each
uscr process, called a client, has its own, dedicated server process at the remote host. The
dedicated server and a connection between client and server are created by a special server
creation process on the remote host, at the time when the client accesses the first file on that
host. If the client accesses several files on the same remote iiost, the dedicated server is multi-
plexed among all requests.

IBIS implements all remote file operations with the IPC facilities of UNIX 42 BSD, and

is based on TCP/IP. The access transparency layer is sandwiched between the UNIX kernel
and user programs. For local filcs, the layer simply invokes the standard UNIX systcm calls.
For remote files, the layer observes a remote procedure call protocol for interacting with the
server. Since IBIS uses TCP/IP rather than streamlined protocols, highly reliable operation
results. Furthermore, IBIS is not restricted to local area networks. It can provide reliable file
access between any 2 Unix systems running TCP, even if they are connected via gateways and
lossy subnets. As will be shown below, the performance penalty for this generality is modest.

In std. UNIX, open file descriptors are inherited across the system calls fork and execve,
which create new processes. IBIS guarantees the same behavior for remote file descriptors.

For example, fork opcrates as follows (see Fig. 1). If a process with remote file descriptors

forks a child process, the scrver forks a new server for the child on the remote machine. The

child server then connects to the child process. The child server automatically shares the open

files with the parent server. This protocol results in the same behavior as if the files had been

local. Thus, remote file operations simulate the behavior of the UNIX file system exactly.

89

Local host Remote host

P P’s server

Fd’s Fd’s

ee eee ee ee -i. => —

fl f2

Local filc Remote file

a) Before fork

Local host Remote host

P P’s scrver

Fd’s

Fd’s

fl ae Pe ae eee eee b= f2

P’s child F’s child’s server

b) After fork

Figure 1: Remote file access before/after fork.

The complete list of system calls and I/O functions with remote access appears in the

appendix. Because of faithful access transparency and a complete set of file operations, almost

all existing programs can be upgraded to interact with remote files by simply rclinking them

with the new I/O functions. As test cases, we have relinked the following UNIX commands:

cat, chmod, cp, csh, diff, ed, In, Is, mkdir, mv, rm, rmdir, and all RCS operations [3]. For

example, upgrading the command /s for remote access required no special treatment, since /s

simply opens a dircctory as a remote file. The command rm required a minor modification.

The Purdue version of rm does not remove a file; instead, it moves the file to a special direc-

tory called tomb, where it will be deleted after a few days. Simply rclinking rm with the new

library resulted in a program that moved a file to the tomb on the host where the command

was exccuted. Thus, rm moved all remote files to the local machine, causing large amounts of

90

useless data to be transmitted. A simple modification ensured that rm now moves a file to the

tomb at the file’s home machine.

An important application of the remote access primitives is a version of csh with remote
access, Called resh. Although rcsh exccutes all commands on the local machine, it provides
VO redirection for remote files, and transparent filename substitution on local and remote

machines. For example, suppose the command

cat host2:foo.* > host3: result

is executed on host]. Rcesh first generates a list of filenames by performing filename substitu-
tion on host2. Cat runs on host], but opens the files on host2 remotely. Resh then redirects the
output of car to the file result on host3.

Another convenient shorthand made possible by the remote access primitives are cross-

machine symbolic links. For example, the command

In -s hostl:path hl

establishes the synonym h/ for hostI:path. Whenever a program accesses a file via Al, an impli-
cit remote access is performed. With symbolic links crossing machines, a user can construct a
directory tree that spans several machines. Remote symbolic links can simulate location tran-
sparcncy (but not replication and migration) to a certain degree.

2.1. Authentication

A fundamental problem with remote access is authentication. Remote access should not
require additional authentication from the user, yet should be secure enough to prevent
impersonation and violation of access rights. For example, while a connection between a
client and a server is being established, it is possible that a malicious program impersonates
the server and grabs the connection to the client before the real server has a chance to con-
nect. To foil such an attack, the client needs a way of ascertaining the authenticity of the
server. Similarly, the server must have a way of determining that it is connected to the right
client. Finally, the scrver must observe the access rights that the client process has. The client

process should gain no more nor less access rights through the server than if the client were

running directly on the remote machine.

We solved these problems as follows. The dedicated server is established by an authenti-
cation mechanism called a “two-way handshake via secure channel” (sce Fig. 2). When a client
process P attempts to cstablish a conncction to a remote host, it reserves a port numbcr A and
executes a connection starter program. The conncction starter opens a secure channel to the
server creator in the remote host and passcs the user id of P to it. The server creator then

establishes a server Q with the access rights of P, as indicated by the user id. Q reserves a
portnumber B. Next, P and Q exchange their portnumbers via the secure channel between the
connection starter and server creator. Finally, P and Q establish their own connection, and

91

verify each other’s portnumber. This mechanism assures that neither server nor client can be

impersonated by another process, and that the server has the correct access permissions. The

secure channel is implemented by making both connection starter and server creator

privileged processes which communicate via privileged port numbers. Note that the client and

its server are not privileged and do not use privileged port numbers. A privileged channel is

only used for setting up the dedicated connection. The Unix 4.2 commands rcp and rsh use

the privileged channel continuously, and must therefore be privileged.

Connection (3) _ Server

startcr Secure channe| | <teator

@ SFO OS “)

Client (7) Server
< co

(1) New connection (6)

(1) Reserve a port number A
(2) Execute connection starter with argument A

(3) Pass A and clicnt’s id to server creator via secure channel

(4) Fork a server process

(5) Reserve a port number B if authentication checking succeeds

(6) Pass B via secure channel back to clicnt
(7) Establish new connection using A end 3 and verify

Fig.2. Two-way handshake via secure channel

2.2. Performance

We compared the execution times of our remote commands with the std. UNIX system

calls for local access, and with rcp for remote access. Measuring execution times was difficult,

since local CPU times do not reflect delays caused by communication with remote servers. We

thercfore chose to consider only elapsed time. Elapsed time includes delays caused by com-

munication, but also dclays caused by timesharing. The measurements were taken with only 1

or 2 users on each host, but with all other demon processes still operating. The hosts were 3

VAX/11-780s connected with a 10Mbit Pronet. All measurements are in seconds.

Table 1 below contrasts remote access and local access. Note that for local files, the

overhead introduced by IBIS for open is negligible. For local reads, the overhead rises for

some reason with the size of the file. Placing IBIS into the kernel would probably climinate

that anomaly. For remote files, we need to distinguish whether IBIS is accessing the first file

on the remote host, or subsequent ones. The initial access is quite expensive, since it involves

setting up a dedicated server and a connection. Subsequent remote open operations are only

92

about 4 times more expensive than a local open. The time for the initial remote open could be

reduced by maintaining a dedicated connection per user, which is reused by every process

owned by that user. A remote read is between 3 and 10 times more expensive than a local

read. Again, placing the access transparency layer into the kernel should speed it up.

System call File Open Read

location

initial | non-initial | 1K bytes | 5K bytes | 10K bytes

Standard calls local 0.012 0.012 0.025 0.053 0.08.5

IBIS calls local 0.013 0.013 0.026 0.094 0.136

IBIS calls remote 1.787 0.053 0.078 0377 0.884

Table 1: Performance of IBIS calls vs. standard system calls

Table 2 comparcs the performance of the UNIX 42 remote copy command (rcp) with the

cp command linked with the IBIS library. The left half of the table shows copying times

between a remote and the local host, the right half between 2 remote hosts. In the first case,

rcp is about 50% slower than IBIS; in the second case about 70%. Note the file sizes chosen.

According to [4] and [3], the average UNIX text file has about 250 lines, and with each lines
having less than 40 characters, the average file consumes not more than 10K bytes.

local <--> remote remote <--> remote

Command

10K bytes 20K bytes 10K bytes 20K bytes

IBIS cp 281 330 §37 6.153

rcp 433 4.72 9.22 11.62

Table 2: Performance of IBIS cp versus rep.

In summary, remote file access in IBIS is tolerably slower than local access. It runs some-

what faster than an an existing program (rcp) that performs remote access. Much room for

improvement remains, since IBIS was implemented with the UNIX 4.2 IPC mechanism without

efficiency considerations.

3. Location Transparency, Migration, and Replication

A number of UNIX networks provide access transparency, but no location transparency,
migration, or replication. Examples are COCANET [5] and UNIX United [6]. LOCUS [7]
provides location transparency and replication, but no migration. LOCUS also implements a
centralized file access protocol which requires that cach file access must first communicate
with the “synchronization site” for that file to locate a valid copy. Thus, even if a node has a

93

copy of a file, it must synchronize at a potentially remote site for opening and closing the file.

In particular, the synchronization site of a replicated file is always remote. IBIS avoids both

the bottleneck of a synchronization site as well as remote synchronization for local replicates.

IBIS provides a more decentralized control for file access than LOCUS. The advantage of

decentralization is more potential parallelism and better fault tolerance.

In the following, we describe IBIS’ scheme for keeping a distributed and replicated file

system consistent. We shall first discuss how files are treated, how replication and migration

are controlled, and then present the directory level and the file lookup mechanism.

3.1. IBIS Files

An IBIS file has a unique file identifier or fid, which is a triple <host#, device#,

inode#>. The fid of a file specifies on which host and device the file was originally created.

The inode number uniquely identifies a file on a given device. Note that fids can be created

on each host independently; no interrogation of a potentially remote synchronization site as in

LOCUS is necessary.

An IBIS file is in one of 4 states: U, P, F, or S; compare Figure 3 for the complete state

transition diagram. State U means that the file is a unique copy; there are no replicates any-

where. Thus, local operations on such a file incur no overhead. State P means that the file is

the primary copy, and may have replicates in the network. All updates are performed on the

primary copy. Replicates are cached at other sites to speed up read accesses. If the primary

copy is updated, the update broadcasts a signal that invalidates the cached copies. Further-

more, if a primary copy is updated, its state reverts to U, since there are no replicates. Thus,

an update has the following properties: First, updat synchronizes at the file’s home site; no

other sites must be interrogated. Second, the cost of creating replicates is distributed to the

machines with the replicates. Third, updates have the contraction property: They eliminate

replicates and free space. Of course, the replicates will reappear if the updated file is accessed

again remotely, but only at sites where the file is in use.

react read Tead |
rete replicate replicate

Figure 3: State transition diagram for IBIS files.

94

Replicated files are either in state F (fresh replicate) or S (stale replicate). State F means
that no invalidation signal has been reccived from the primary copy, and the replicate is there-
fore assumed to be up to date. State S means the file is a replicate of an earlier version of the
primary copy. Because of delays in propagating the invalidation signal, it is quite possible that
a replicate is in state F, when it should be in state $. However, in the absence of timing chan-
ncls among hosts, operations on a file are still serializable. If the delays of receiving the invali-
dation signal are intolerable for some applications, the best approach is to simply disallow
replication of the affected files. The cost of instantaneous update of all replicates of a fre-
quently changing file is much higher than remote access of a single copy.

Migration in IBIS means to change the site of the primary copy. Thus, migration is used
mainly for speeding up write access, while replication improves read access times. Migration
essentially designates a fresh copy as the new primary. It is an expensive operation, because it
must atomically change the fid of the primary copy in all replicates of its parent directory (or
first delete all replicates of the parent directory).

3.2. Replication and Migratton Control

File replication pays off for those files that are read more often than written. Files and
directories near the root of a hierarchical file system exhibit that property. In particular,
dircctorics experience much higher levels of reads than writes, and a high degree of replica-
tion undoubtedly improves system performance. IBIS therefore provides “demand replication”
by default. Demand replication means that a replicate is cached locally whenever the
corresponding primary or unique copy is read remotely. Thus, unless demand replication is
disabled for a file, simply reading it generates a local cxpy of it. This strategy is quite
appropriate near the root of the directory tree. At lower levels of the tree, sharing of sub-
directorics diminishes, while update traffic increases. Hence, less replication is desirable to
improve performance. Note that because of the contraction property of updates, unuscd repli-
cates will disappear after the next update. We therefore expect lower levels of the tree to
automatically have little or no replication.

For reliability purposes, IBIS also provides “forced replication”. Forced replication
causes a certain number of replicates to be generated, even if no remote access occurs. A copy
marked for forced replication refreshes itself as soon as the invalidation signal arrives. (Thus,
replicate copies are “pulled” by the remote site, rather than “pushed” by the site holding the
primary copy.)

It is also possible to totally disable replication for frequently updated files. This restric-
tion is recorded in the unique copy, causing the state U to “stick” to it.

Automatic migration is more difficult to implement. IBIS will initially provide explicit
commands for migration. As we gain more experience with nctwork operating systems where
processes seck out the hosts with the lowest loads, we plan to develop automatic placement
and migration mechanisms.

95

3.3. Directories and Pathname Searching

Directories are implemented as files. They have the same state attributes and follow the

same access protocol. A directory simply pairs character strings with fids of files (which may

again be directories). Because the fid may belong to a remote file, and because there may be a

local replicate, the directory must contain additional information, namely the fid of the local

copy (if any). Thus, a directory implements the following 2 mappings:

character string --> primary fid --> local fid

If the primary copy is on the local host, the primary fid and the local fid are identical. The

local fid is undefined if there exists no local copy. A directory entry with an undefined local

fid is called a “dead end”. Whenever directory lookup reaches a dead end, remote access is

needed for locating the object. Fig. 4 below illustrates two hosts with two levels of a common

directory tree which is partially replicated.

pPrile foc
Aim lee

(ess) [a Te | ¢ Cpremary)| 4 gif

Jb te S/o je (a\ file)
(primary)| A (£resh) A Cuncqne

H ost A H ost BR

Figure 4: A replicated directory tree.

Replicated copies of directories are in general NOT identical, even if they are consistent.

For instance, two directories on two machines listing a replicated file contain different local

fids. When a stale directory replicate is refreshed, a simple copy operation is not sufficient.

What must be updated is the mapping from character string to primary fid, but the mapping of

primary fid to local fid must remain unchanged (except for deletions). Otherwise, the replicate

of a whole subtree may be lost whenever the root of that subtree changes. For example, in

Figure 4 consider what must be done in host A if the entry b in the root directory of host B is

renamed to x.

96

It should now be clear how pathname searches proceed. Given a character string, a
pathname search locates the primary fid and the local fid (if defined) of the file named by the

character string. The local fid is desirable for local read access; the primary fid is needed for
(potentially remote) read/write access. The search starts either with the current directory, or
the file system root. To commence, one of these two directories is opened. This may be a local

open of a unique or primary copy, or a remote open, or an open of a local replicate (possibly

after restoring its state to F). The opened directory is searched for the first pathname com-

ponent. If a match is found, the associated primary and local fids are retrieved. If the local
fid exists, the scarch continues in the replicate. If the cntry is a dead end, the search must

continue in a remote dircctory. The host number embedded in the primary fid indicates

where the primary is located. If the host with the primary is not reachable because of network

partitioning, a broadcast may locate a replicate. After the primary or a replicate is located,

the search continucs in that directory (possibly creating a local replicate at the same time).

Much design work remains to be done. We need to develop robust algorithms for parti-

tioning the net and the file system in case of failures, and for reconnecting it back together. If

the network is partitioned, primary copies of files may no longer be reachable. In that case, a

special protocol must designate one of the (hopefully available) replicates as a temporary pri-

mary, such that updates may proceed. For reconnecting the file system, we have already

developed a gencral three-way file merging technique that can merge two versions of a file

with respect to a common ancestor [8]. A three-way file merge is reliable, provided there are

no overlapping changes and the common ancestor of the two diverging primarics has been

saved. The natural time to save the common ancestor is when a replicate is promoted to tem-

porary primary status. Our merging technique merely requires that the user provide routines

for extracting and comparing individual records for cach type of file to be merged. Merging

of directorics and text files is done automatically. The merging technique generalizes to a

3(n-1)-way merge, if the net is partitioned into n=2 subnets.

4. Conclusions

The access transparency layer of IBIS is complete and operational. Using it is immedi-

ately addictive. After some initial expcrimentation, it becomes natural to access remote files,

especially since there is not a single new command to learn. Directly editing a remote file is

enormously more convenient than using remote login. Interactive programs with remote

access (like screen editors) are normally faster and need fewer cycles than remote login,

because all high-bandwidth user interaction is done locally. Morcover, remote access com-

mands can deal with files on several machines simultaneously, whereas remote login or a

remote shell limits the user to one machine at a time. Finally, any existing program can be

upgraded to remote access almost instantly.

Remote symbolic links have also proven to be quite useful. They permit users to simu-

late a directory tree spanning several machines. Remote symbolic links in conjunction with

access transparency can almost provide location transparency. The only drawback is that the

97

current directory must be on the local machine; it is impossible to change the current direc-

tory to a remote one. We plan to lift this restriction.

The access protocol for the location transparent level of IBIS has been carefully designed

to avoid overhead for purely local operations. For example, local file creation, local read/write

of a unique or primary copy, and local read of a replicate incur almost no overhead. In addi-

tion, the cost of making replicates is distributed, and the contraction property of updating

assures that frequently written files experience a low level of replication. Demand replication,

on the other hand, automatically replicates files and directories that are read-shared at many

different hosts. File migration, finally, improves write access by automatically or semi-

automatically moving files to the sites where they are written.

Appendix: The IBIS Access Transparency Layer

System calls with remote access:

access, chdir, chmod, close, creat, dup, dup2, fchmod, flock, fork, fstat, fsyne, ftruncate, link,

Iseck, Istat, mkdir, open, read, readlink, rename, rmdir, stat, symlink, truncate, umask,

unlink, write.

Stdio function with remote access:
clearerr, flcose, feof, ferror, fflush, fgetc, fgets, fileno, fprintf, fputc, fputs, fread, fscanf,

fscek, ftell, fwrite, getc, getchar, gets, getw, printf, putc, putchar, puts, putw, rewind, scanf,

sctbuf, sctbuffcr, sctlincbuf, sprintf, sscanf, ungetc.

Other library functions with remote access:
closedir, opendir, perror, popen, readdir, rewinddir, scandir, seckdir, telldir.

References

1. Paris, Jchan Francois and Tichy, Walter F., “STORK: An Experimental Migrating File
System For Computer Networks,” pp. 168-175 in Proceedings IEEE INFOCOM, IEEE
Computer Socicty Press (April 1983).

2. Comer, Douglas, “Transparent Integrated Local and Distributed Environment (TILDE)
Project Overview,” CSD-TR-466, Technical Report, Purdue University, Department of

Computer Science (1984).

3. Tichy, Walter F., “Design, Implementation, and Evaluation of a Revision Control Sys-
tem,” pp. 58-67 in Proceedings of the 6th International Conference on Software Engineer-

ing, IPS, ACM, IEEE, NBS (September 1982).

4. Kernighan, Brian W. and Mashey, John R., “The UNIX Programming Environment,”
Software -- Practice and Experience 9(1) p. 1-15 (Jan. 1979).

a Rowe, Lawrence A., Cortopassi, Joseph R., Doucette, Douglas P., and Shoens, Kurt A.,

RIGEL Language Specification, Computer Science Division, University of California,
Berkeley (March 1980).

6. Brownbridge, D. R., Marshall, L. F., and Randell, B., “The Newcastle Connection or

UNIXes of the World Unite!,” Software -- Practice and Experience 12 p. 1147-1162 (1982).

hin Popck, Gerald, Walker, Bruce, English, Robert, Kline, Charles, and Thiel, Greg, “The

LOCUS Distributed Operating System,” Operating Systems Review 17(5) p. 49-70 ACM,
(Oct. 1983).

8. Tichy, Walter F., The String-to-String Correction Problem with Block Moves, to appear in

ACM TOCS 1984.

