
A Distributed File System For UNIX

Matthew S. Hecht, John R. Levine, * Justin C. Walker
Interactive Systems Corporation

8689 Grovemont Circ le
Gaithersburg, MD 20877

a n d
*441 Stuart Street
Boston, MA 02116

January 1984 UniForm Conference Proceedings. \A/ashington DC
2

A D I S T R I B U T E D F I L E S Y S T E M F O R U N I X
(Extended Abstract)

M a t t h e w S . H e c h t
John R. Levine*
J u s t i n C . Wa U c e r

INTERACTIVE Systems Corporation
8689 Grovemont Circle

Gaithersburg, Maryland 20877
(202) 789-1155

allegralimalmatthew

a n d

*441 Stuart Street
Boston, Massachusetts 02116

November 1983
revised February 1984

Summery

We describe a design for achieving user-level transparent access to remote files in a local area
network of homogeneous UNDC# systems. The design features (1) a remote mount system call
that allows the mounting of a remote directory onto a local directory; (2) a specialized remote
function coU mechanism that allows one UNDC kernel to call functions in another; and (3) a con
nectionless scheme for communication between hosts. This note describes work in progress.

1 . P R O B L E M S T A T E M E N T

The problem we solve here is how to make access to local and remote UNDC files (in a local area
network) indistinguishable to users; that is, the syntax and semantics of local and remote file
access are identical. For example, the user of a command like

c p X y

where x and y are arbitrary pathnames, can be oblivious to the location of files x and y (one or
both may be local or remote) since the underlying UNDC system calls do the right things in either
c a s e .

Transparent access to remote files in a local area network of UNDC systems provides new
opportunities for file sharing. Independent UNDC systems can share files, diskless workstations
can obtain file service from another UNDC system, and workstations with low capacity disks can
share databases. Transparent access also allows files to be relocated without breaking programs.

Our solution features a remote mount system call, and roughly places the interface to remote
files at the i-node function level of the kernel. This work contains a novel mix of implementation
ideas, yielding a simple, clean, and practical solution. Instead of assigning a remote file-server
process to a local user process, we use a pool of kernel file-server processes that feed from a

• U N I X I * • l r % 4 t « i » r k e l B * l l L « b o r » t e r i t *

2 4 /usr/group, USENIX

commoQ request queue. Id addition, we use a coonectionless (datagram-based), specialiied remote
fuoction call mechanism that draws ideas from work by Nelson (6].

Extant work on distributed file systems for UNIX is extensive and growing; we comment on a
few related papers here. Chesson {l| attributes early work on remote mount to Lucas and Walker
|5) at National Bureau of Standards. Glasser and Ungar |2) at Bell Labs studied a read-only, con
nectionless datagram scheme for remote mount. Our work is similar to that of Luderer and oth
ers |4] at Bell Labs on S-UNDC/F-UNDC and to a design of Plexus Computers called Network
Operating System (NOS) by Picard described by Groff [3|. However, these papers indicate a
different process architecture with communication based on virtual circuits. Also, the S-
UNDC/F-UNIX work makes the cut at the system-call interface, not at the i-oode interface. The
COCANET project of Rowe and Birman |8| at UC Berkeley is more ambitious than our work; we
do not handle remote processes. The LOCUS project of Popck and others |7, 0] at UCLA is also
more ambitious; we do not consider replicated files nor transactions nor remote processes. To onr
knowledge, the only above-mentioned projects in operation now are NOS and LOCUS.

S . N E T W O R K N A M E S P A C E M O D E L S

Although various models exist for extending the UNIX filesystem name space to a network, we
have chosen the remote mount model because it has properties that we desire, such as location
transparency and ability to specify a remote root file system. The models include:

• Host- and Î -̂Qualified Absolute Pathnames
• Global Root (Super-Hoot)
• P e r - H o s t S u b d i r e c t o r i e s

• Symbolic Links
• R e m o t e M o u n t
• C o m b i n a t i o n s o f t h e a b o v e

We explain these models with familiar directed graph terms. To get started, it is convenient to
pretend that a single UNIX file system is a rooted, connected, directed tree (typically pictured as
a triangle), with arcs directed from the root. Recall that an arc is a pair of points (tail, head)
drawn as an arrow from tail to head (associate "head" with "arrowhead"). A single UNIX file sys
tem is not really a tree bccajte parei^ 0'..''} e.rt'Xrtes and

The various network name space models explain how to draw a network filesystem tree, and
sometimes suggest implementations. Uuep has host- and .pittf̂ ualified absolute pathnames. Pic-
lure separate trees, one for each host system. A file name may consist of a host name followed by
the character '!' followed by an absolute pathname, in which case the pathname is sent to that
host for resolution. Or, a path of T-terminated host names specifying a route may precede an
absolute pathname.

The super-root (global root) model makes each existing root file system a subdirectory of a
new super-root. A super-root qualified pathname can begin with a special character, say fol
lowed by a host name, in turn followed by an absolute pathname.

COCANET |8j supports per-host subdirectories, where the root of each hoet, m addition to its
local subdirectories, has a subdirectory for each host, including itself.

Symbolic links |ll| generalize normal, intra-filesystem UNIX links. A special i-node type,
called a symbolic link file, contains a pathname. When the name resolution function Ramet()
encounters this file while resolving a name, the contents of the symbolic link file are prefixed to
the rest of the name (if any). If the symbolic link file contains an absolute pathname, the result
ing name is interpreted relative to the root directory. Symbolic links allow inter-filesystem links
on the same host. In addition, symbolic links to directories are permitted by a superuser. Conse
quently, we can have network links if we support a symbolic link file that contains a host- or

January 1984 UniForm Conference Proceedings, Washington DC 2 5

.^ft(b-quaJified absolute pathname.
A

The remote mount model generaliies the (normal) mount model. The mount command allows
us to attach a tree, the root of another file system, onto a directory of our root Rle system. The
rmount command allows us to attach a remote tree, a directory in a remote file system, onto a
directory of our root file system. We can mount the tree with read-write access or read-only
a c c e s s .

In addition, combinations of the above models are poesible. For example, we can use either
symbolic links or remote mounts or a combination of the two to provide per-hcst subdirectories
and to customize the resulting name space.

In this note we omit a discussion of the problems, advantages and dbadvantages of each
model. However, we do point out that interhoet linking (by symbolic links or remote mounts) is
potentially unsafe because it can introduce unsafe loops in the network tree that can result in
undesirable behavior by tree walkers like ̂ inrf, du, and cpdir (cp -R). Also, commands like mvdir
may not preserve loop-freedom. There are regimes of constraints for interhost linking that are
both safe and flexible in practice.

J . S K E T C H O F D E S I G N

Our design consists of modifications to the UNIX System V kernel.
System Calls

We have added several new system calls, including

rraount(ho6tname, rdir, Idir, ronly), and
rumount(dir).

Fmount mounts remote directory rdir of system hostname on local directory Idir, where ronly
specifies read-only or read-write access, and rumounl unmounts a .remote directory from the
given local directory. The rmounf table, analogous to but separate from the mount table, helps
the kernel function namc)̂ cross rmount points. A successful rmount installs a TO entry in the
local rmount table and a FROM entry in the appropriate remote rmount table.

Figure 1 shows an example of a remote mount where directory /g of host green is mounted
onto directory /b of host blue. Now, /b/w/z is a valid pathname on host blue.
3.2 Cllenz (Request) Side

We distinguish i-nodes that represent locally stored files from i-nodes that represent remotely
stored files. The latter we call surrogate i-nodes. If a pathname creeses an rmount point, the
local system sends a nflmci() request with the remainder of the pathname to the remote system.
The remote system resolves the pathname, calls iget{) there, and sends, as the nomê) response, a
handle that identifies the remote i-node. The requesting system uses the (host, handle) pair to
define a surrogate i-nodc. which it installs in the local i-node table. Only the local file table is
used during access to a remote file, not the remote file table.

Operations on surrogate i-nodes generally translate into remote function calls. Currently,
these operations include accessf), chmodf), chownfj, closeJ(), ioctlf), iputfj, itruncf), iupdatfj,
lockfO, linkO, maknodef), nameif), openif), oumer(), plock(}, pTele(}, rtadi(), rmounl(), rumount(),
seek(), slatl(), unlink(}, ulime(}, v}ritei(), and a few others. In addition, we are experimenting
with more comprehensive operations to lessen network traffic. A new stub-manager module,
which we call the agent, consolidates the remote function call mechanism for the client, and hides
request/response message formats from caller modules.

2 6 /usr/group, USENIX

3.3 Server (Response) Side

locomiDg remote requests for locai Sie service are eaqueued on a common request queue. A pool
of kernel processes handle remote requests to local i-oodes. The code for a server looks like:

for (;:) \
wait for a request;
dispatch function;
send response;

3.4 Transport Pro^eoli Packet Bxehange Protocol

As the transport protocol, we currently use the Packet Exchange Protocol {PEP) {lOj, since it
provides most of the request/response model assumed by our design. This protocol uses a socket
abstraction, a network address where processes can send packets and rendezvous, and a packet
abstraction, a message container.

Figure 2 shows the software layers in the current prototype, and Figure 3 shows innards of an
implementation of the PEP layer. In Figure 3, a circle denotes a process, a rectangle denotes a
module, an arrow denotes a function call, and a denotes missing details. Because PEP is not
well-kDown, we include a brief description of it here.

PEP has a three-function interface. WaitReguestf), called by a server, waits at a known
socket for an incoming request packet. SendRequestf), called by the agent, transmits a request
packet to a known server socket, and blocks until it returns either a response packet or error. If
necessary, the packet is retransmitted a specified number of times, waiting a specified interval
between retries. SendReeponeef), also called by a server, transmits a response packet to a socket
and does not block. The caller of SendRe8ponse{), a server here, is responsible for detecting
duplicate requests and retransmitting responses.

Network layer code enqueues arriving PEP packets onto the PEP receive-queue, and wakes up
the PEP receiver process. This process dequeues packets, matches them to SendReque8t[) and
WaitRequee^) entries in its match table, and wakes up the appropriate sleeping server or client

p r o c e s s .

4 . P R O B L E M S A D D R E S S E D

In this section we give an abbreviated description of various design problems that arise and indi
ca te so lu t i ons fo r some o f t hese .

4 .1 Rmounc Imp lemenzav lon

Problem areas that arise in implementing the rmount model include multiple hops, rmount
loops, and security. We comment only on the first two.

In a multiple-hop design, messages are transshipped through intermediate hosts. A surrogate
i-node on host Hi may point to a surrogate i-node on host H2, which in turn may point to the
real i-node on host H3. However, it b possible to eliminate multiple hops and produce a single-
hop design where messages are sent directly to the end host. In a multiple-hop design, name^)
can cross an rmount point in a server by passing the remaining pathname to the next host. In a
single-hop design, when crossing an rmount point a server name^) can return the identity of the
next host and the pathname progress to the original client host, which sends the remaining path
name to the next host. Thus, we can stack the host path walked by system calb chdir and
ehroot, and pop retraced subpaths.

To ascend (with **..") an rmount point, we remember the previous jump-off point of thb
namet() and use a FROM entry in the server rmount table. Thus, we can allow more than one

January 1984 UnlForm Conference Proceedings, Washington DC 2 7

local directory per host to rmount the same remote directory. With a multiple-hop Bcheme, we
can re9ect the remaining pathname back to the requeator hoet at the jump-ofl point, which b
sent in the original request. With a single-hop scheme, we can stack the rmount jump-off points
and uniquely retrace

i . 3 P E P M o d e l

PEP, while useful here, does not exactly match our application of remote and nonidempoteot
function calb. PEP b a request/response model for idempotcnt requests. While idempotencif in
thb context normally means that reevaluating a duplicate request produces the same value and
state as evaluating the original request, we can relax it to mean that request reevaluation b harm
less, as in the case of a time server request. The function name^), for example, b nonidempo-
tent: if it locks an i-node the first time called, then the server process will block the second time
called as UNIX does not remember the identity of the locking process. Consequently, the applica
tion layer RF solves some protocol problems that perhaps belong to a transport layer, like dupli
cate request detection.

4 . 3 P r o M M A r e h h e e i u p *

Three problems associated with our process architecture are side-stepping the notion of a session,
cleaning up server state upon actual or presumed death of a client host that holds server host
resources, and preventing server deadlock. We omit discussion of these here.
4 . 4 M l s e e l l a n e o u s

To avoid unnecessary packet copying, one can add a little slop space before a buffer to bold pro
tocol headers, or use a scatter/gather data structure that network devices support.

S , C O N C L U S I O N

The current design has limitations that, while not insurmountable, need mention. Fbst, we con
sider a network of homogeneous hosts so that an executable from a remote host runs on the local
host. With heterogeneous hosts, thb b not the case. Second, we consider a partitioned, but not
replicated, file system. Third, we do not consider remote processes, executing a command on a
remote host, functionality we plan later. These intentional limitations let us chew the first bite.

Based on our experience to date with a prototype of thb design, our conclusion b that a con
nectionless rmount approach for a distributed UNIX file system b practicable. More performance
experience and code tuning b needed before we can remove the "b" and "e" from that last word.

A e k n o w l e d g m e n i

We gratefully acknowledge helpful dbcussions and comments on the ideas in thb paper by Lee
Cooprider, Dan Franklin, Gary Gordon, Brian Lucas, David Marx, and Joe Sokol.

R e f e r e n e e *

|l| Chesson, G., Borden, B., and Gurwiti, R., "UNDC Systems on Local Area Networks,"
tutorial, 1984 UniForum Conf. (January 19S4).

|2j Gl2»scr, A., and Ungar, D., Fifth Berkeley Workshop on Distributed Data Monoyement and
Computer Networks (February 1081).

[3] Groff, J.R., "Modified UNIX System Tames Network Architecture," Electronics, pp. 159-163
(September 22. 1983).

[4] Luderer, G.W.R., et at., "A Dbtributed UNIX System based on a Virtual Circuit Switch,"
Proc. 8th Symposium on Operating Systems Principles, Pacific Grove, Calif., pp. 160-168

2 8 /usr /g roup, USENIX

(December 1981).

[5] Lucas, D.W., aod Walker, J.C., ucpublUhed work, National Bureau of Standards (1976).
|6) Nelson. B.J., "Remote Procedure Call," report number CSL-81-9, Xerox Palo Alto Research

Center, 3333 Coyote Hill Road, Palo Alto, Calif. (May 1981).

|7j Popek, G., et ai, Proc. 8th Symposivm on Optraiing SyticmB Prxnciplei, Pacific Grove,
Calif., pp. 169-177 (December 1981).

[8] Rowe, L.A., and Birmao, KP., "A Local Network Based on the UNDC Operating System,"
IEEE Trant. on Software Engr., Vol. SE-8, No. 2, pp. 137-146 (March 1082).

[9] Walker, B., et ai, "The LOCUS Distributed Operating System," Proc. 9th Sympooium on
Operating Syttenxa PrincipUt, Bretton Woods, New Hampshire, pp. 40-70 (October 1083).

jlO] "Internet Transport Protocols," Xerox System Integration Standard XSIS-028112, Chapter
8, pp. 49-51, Xerox Corporation, Stamford, Connecticut (December 1081).

(11) UNIX Programmer't Manual, 4.2 Berkeley Software Distribution, Univ. of Calif., Berkeley,
Calif. (August 1083).

b l u e g r e e n .

X y z

a t b l u e : r m o u n t [- r] g r e e n / g / b

January 1984 UnlForm Conference Proceedings, Washington DC 2 9

Our Design ISO Layers

R e m o t e F i l e s R F

P E P

N E T

E T H E R N E T

Application

P r e s e n t a t i o n

Sess ion

Transport

N e t w o r k

L i n k

Physical

V\QuCe, Z. SoC\v3c<fe.

3 0 /us r /g roup , USENIX

+

^lOuf£. 3.

January 1984 UniForm Conference Proceedings, Washington DC

