
NFS Sensitivity to High Performance Networks

Richard P. Martin and David E. Culler
Computer Science Division

University of California
Berkeley, CA 94720

Abstract
This paper examines NFS sensitivity to performance character-

istics of emerging networks. We adopt an unusual method of in-
serting controlled delays into live systems to measure sensitivity to
basic network parameters. We develop a simple queuing model of
an NFS server and show that it reasonably characterizes our two
live systems running the SPECsfs benchmark. Using the techniques
in this work, we can infer the structure of servers from published
SPEC results. Our results show that NFS servers are most sensitive
to processor overhead; it can be the limiting factor with even a mod-
est number of disks. Continued reductions in processor overhead
will be necessary to realize performance gains from future multi-
gigabit networks. NFS can tolerate network latency in the regime
of newer LANs and IP switches. Due to NFS’s historic high mix
of small metadata operations, NFS is quite insensitive to network
bandwidth. Finally, we find that the protocol enhancements in NFS
version 3 tolerate high latencies better than version 2 of the proto-
col.

1 Introduction
Local and system area networks have made rapid performance ad-
vances in recent years [2, 3, 7, 11, 241, including increases in per-
port bandwidth (e.g. from 10, to 100, to 1000 Mb/s), huge increases
in aggregate bandwidth, plus reductions in network latency and
software overhead. With switching, aggregate bandwidth scales
with number of nodes in network. Routing ASKS can forward
small packets at the line rate. Cut-through routing reduces the
switch latency into the microsecond range. Such performance in
Local Area Networks (LANs) was unheard of even 5 years ago-
these networks represent a fundamental advance over their prede-
cessors, 10 Mb Ethernet and FDDI.

The recent performance gains of these networks motivate the

This work was supported in part by the Defense Advanced Research Projects
Agency (F30602-9%C-0014),the National Science Foundation (CDA 9401156), Sun
Microsystems, Fujitsu and California MICRO. The authors can be contacted at
{rmartin, culler}~cs.berkeley.edu.

Permission to make digital or hard copes of all or part of this work for
personal or classroom use IS granted wthout fee provided that
copes are not made or dtstributed for profit or commercial advan-
tage and that copies bear this notee and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMETRICS ‘99 5/99 Attanta, Georgia, USA
0 1999 ACM 1.58113.083.X/99/0004...$5.00

question: “How much do improvements in network performance
translate into improvements in application performance?’ Al-
though the application spaceis enormous, previous work shows that
60%-70% of LAN traffic is filesystemrelated [8,18]. We thus focus
our study on the effects these recent networks have on the Network
File System (NFS) protocol. In particular, we want to understand to
what aspects of the communication subsystem (e.g. bandwidth, la-
tency, overhead)is NFS most sensitive. Insteadof attempting to an-
swer these questions in a piecemeal fashion for specific point tech-
nologies, we take a systematic, parameterized approach so we can
draw general conclusions.

We view the NFS system under investigation as a “grey-box”.
From this perspective, the clients and server comprise a system for
which we can measure how certain outputs, e.g., the time to read
a file, change in response to various parametric inputs. One class
of inputs are the traditional characteristics of NFS workloads, e.g.
the mix of reads/wtitesllookups and the data set size. These inputs
are governed by the SPECsfs mix and scaling rules. The second
class of inputs are novel to this study. We vary each of the perfor-
mance characteristics of the communication subsystem, including
the bandwidth, latency and overhead. The output of the system is
a curve of response time vs. throughput for a fixed set of commu-
nication characteristics. We can then understand the effect of the
network parameters on the response time vs. throughput curve.

Our approach is two-phased. First, we build a simple model us-
ing standard queuing theory techniques. Second, we perform exper-
iments on a live system. Using the model, we can make predictions
about what will happen in a real system. Our goalin this work, how-
ever, is not to develop highly accurate models. Rather, the purpose
of the model is to conceptualize how the system should behave as
we change the networking parameters. The model’s value lies in its
ability to identify why the system responds as it does.

The second phase of our approach is experimental: we construct
a live testbed on which we can change input parameters and mea-
sure the system’s response. We begin with a network which is
higher-performance than what is generally available, and then scale
back the performance in a controlled manner. As we scale back the
performance, we observe the “slowdown” of the NFS system as a
function of different network parameters. From the slowdown, we
derive the sensitivity of the system to each parameter. A high sen-
sitivity indicates where future work will yield the largest improve-
ments. Our choice of workload, SPECsfs, allows us to compare our
results to industry published data. More importantly, using the tech-
niques in this work we can infer the structure of the NFS servers
from the data published by SPEC.

The combined use of a model and experimental data forms a syn-

71

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301453.301481&domain=pdf&date_stamp=1999-05-01

NFS Operations/Second -

Figure 1: Important Characteristics of the SFS Curve.
This figure shows three important characteristics of all SFS curves:
the base (i.e. minimum) response time, the slope, which determines
the rate ofincrease in response time as load increases for a linearre-
gion of the curve and, the saturation point at the peak operations
sustainable.

ergy which is much more powerful than either alone. With only
a model, we can predict the responses but the results are suspect.
Measured data alone often lacks the simple conceptual interpreta-
tions that models provide. Using both a model and measurement
we can explain the measured results in terms of the model. Points
where the data deviates from model predictions expose weaknesses
in our understanding of the system.

The contributions of this work are: (1) the first systematic char-
acterization of NFS sensitivity to network parameters on a full-
scale benchmark, (2) a comparison of simple queuing theory mod-
els against a live system across a large region of the network design
space, and (3) a characterization of the SPECsfs benchmark which
will aid those interpreting industrial results.

The remainder of the paper is organized as follows. After pro-
viding the necessary background and related work in Section 2,
Section 3 describes the experimental setup and our methodology
for emulating designs with a range of communication performance.
Section 4 introduces a simple queuing-theoretic model of an NFS
system. Section 5 documents the measured sensitivities to network
parameters on two live systems and describes the accuracy of the
predictions made by the model. Section 6 outlines some implica-
tions of our results and analyzes industrial data in the context of our
methods. Finally, we conclude in Section 7.

2 Background
In this section we first describe the SPECsfs benchmark which
forms the workload for our study. Next, we outline the LogP net-
work model, which we use to parameterize the network inputs to
the NFS “grey-box”. Finally, we describe the similarities and dif-
ferences between this and previous work done to quantify NFS per-
formance.

2.1 SPECsfs Workload

SPEC, while widely known for its CPU benchmarks, also produces
an NFS benchmark, SPECsfs (formerly known as LADDIS) [26].
SPEC released the latest version, SFS 2.0, in 1997 [22]. Version
2.0 adds several enhancements. First is the addition of version 3 of
the NFS protocol [20] while retaining NFS version 2. In addition,
TCP can be used as a transport layer instead of UDP. The combi-
nation of these two variants results in four possible configurations

(e.g. NFS version 3 on UDP and NFS version 2 on TCP). We focus
on NFS version 2 running over UDP because this will comprise a
large number of installed systems. Unless otherwise reported, all
results are for systems running SFS 2.0, NFS version 2 using UDP.
We do examine some TCP vs. UDP tradeoffs in Section 5.4.

SPECsfs, as a synthetic benchmark, must define both the oper-
ation mix and scaling rules. The mix has been derived from much
observation of production systems [22,26]. Qualitatively, the SFS
2.0 operation mix is mostly small metadata operations and reads,
followed by writes. The mix represents a challenge to latency tol-
erating techniques because of the small and synchronous nature of
most operations.

Learning from past benchmarking errors, SPECsfs also defines
scaling rules for the data set. In order for a vendor to report a large
number of operations per second, the server must also handle a large
data-set. For every NFS op/sec, the clients create an aggregate of 10
MB of data. The amount of data accessed similarly increases; for
each op/sec 1 MB of data is touched.

Unlike the SPEC CPU benchmarks which report point-values,
SPECsfs reports a curve of response time vs. throughput. The re-
ported response time is the weighted average of different opera-
tions’ response times, where the weights are determined by the per-
centage of each operation in the mix. Figure 1 shows an abstract
SFS results curve. The signature of the curve contains three key
features: the base response time, the slope of the curve in the pri-
mary operating regime, and the saturation point.

At low throughput there will be an average base minimum re-
sponse time. The base represents the best average response time
obtainable from the system. The base will be determined by several
factors, including the network, the speed of the server processor, the
size of the file cache, the amount of Non-Volatile RAM (NVRAM),
and the speed of the disks.

As load on the server increases, there will be a region where there
is a linear relationship between throughput and response time. The
slope signifies how well the server responds to increasing load; a
low slope implies the clients cannot perceive a more loaded server,
while a high slope implies noticeable delays as we add load. The
slope will be affected by queuing effects in the network, at the
server CPU, the server disks and the client CPU. However, a much
more important role in the determination of the slope is the chang-
ing miss rate in the server file cache.

As the load further increases, a bottleneck in the system will limit
the maximum throughput at some saturation point. The nature of
the bottleneck will determine if the point is reached suddenly, re-
sulting in a pronounced inflection, or gradually. Example bottle-
necks include an insufficient number of clients, lack of network
bandwidth, the speed and number of CPUs on the server, and an
insufficient number of server disks.

From our “grey-box” perspective, SPECsfs is quite useful be-
cause it fixes all the NFS parametric inputs but one: the server load.
We can thus restrict the parameter space primarily to the network.
At the same time, our choice of SPECsfs clearly limits our under-
standing of NFS in several ways; it is attribute intensive and it does
not model the client well. Practically, however, our choice allows us
to interpret industrial data published on SPECsfs in the framework
presented in this paper. We perform a brief analysis of industrial
data in Section 6.

72

+ P (processors) +

o (overhead)

limited capacity
lUa to or from
i f5roccessor)

Figure 2: LogP Abstraction. The LogPmodeJ describes an ab-
stractconfiguration in terms offourperformanceparameters: L, the
latency experienced in each communication event, o, the overhead
experienced by the sendingandreceivingprocessors,g, fhegap be-
tween successive sends or successive receives by a processor, and
P, the number of processors/memory modules.

2.2 LogGP Model

When investigating trade-offs in communication architectures, it
is important to recognize that the time per communication opera-
tion breaks down into portions that involve different machine re-
sources: the processor, the network interface, and the actual net-
work. However, it is also important that the communication cost
model not be too deeply wedded to a specific implementation. The
LogP model [6] provides such a middle ground by characterizing
the performance of the key resources, but not their structure. An
environment in which processors communicate by point-to-point
messages is characterized by four parameters illustrated in Figure 2.

L:

0:

9:

P:

the latency, or delay, incurred in communicating a message
containing a small number of words from its source proces-
sor/memory module to its target.

the overhead, defined as the length of time that a processor
is engaged in the transmission or reception of each message;
during this time, the processor cannot perform other opera-
tions.

the gap, defined as the minimum time interval between con-
secutive message transmissions or consecutive message re-
ceptions at a module; this is the time it takes for a message
to cross through the bandwidth bottleneck in the system.

the number of processor/memory modules.

L, o, and g are specified in units of time. It is assumed that the
network has a finite capacity, such that at most [L/g1 messages can
be in transit from any processor or to any processor at any time. If
a processor attempts to transmit a message that would exceed this
limit, it stalls until the message can be sent without exceeding the
capacity limit.

The simple’st communication operation, sending a single packet
from one machine to another, requires a time of L + 20. Thus, the
latency may include the time spent in the network interfaces and the
actual transit time through the network, which are indistinguishable
to the processor. A request-response operation, such as a read or
blocking write, takes time 2 L + 40. The processor issuing the re-
quest and the one serving the response both are involved for time
20. The remainder of the time can be overlapped with computation
or sending additional messages.

The available per-processor message bandwidth, or communica-
tion rate (messages per unit time) is l/g. Depending on the ma-
chine, this limit might be imposed by the available network band-

width or by other facets of the design. In many machines, the limit
is imposed by the message processing rate of the network interface,
rather than the network itself. Because many machines have sepa-
rate mechanisms for long messages(e.g. DMA), it is useful to ex-
tend the model with an additional gap parameter, G, which speci-
fies the time-per-byte, or the reciprocal of the bulk transfer band-
width [11.

2.3 Previous Work

Due to its ubiquity as a distributed filesystem there is vast body of
work on NFS. Fortunately, [20] contains an excellent bibliography
and summary. This section does not try to document all previous
NFS work; rather we categorize related work and introduce papers
which describe previous results upon which our work builds.

NFS studies fall into roughly three categories: protocol changes,
client/server enhancements, and performance evaluation. Although
papers contain some element of all three, often they focus in a single
area. Our work clearly falls into the performance analysis category,
using network performance as the dependent variable.

Although [20] deals with differences between NFS version 2
and version 3, it performs much performance analysis to justify the
changes. It found that a server running NFS version 3 is roughly
comparable to the same server running version 2 with NVRAM.
However, little exploration of the impact of the version 3 protocol
changes is made with relation to network performance.

An extensive bottleneck analysis is presented in [27]. The book
examines the peak throughputs of real-world components (e.g.
CPU, disks, network) and characterizes where the saturation point
will be for different configurations. An interesting result of the
work is that most servers in the SPEC results are over-provisioned
with disks.

Perhaps closest in spirit to our own study is [4]. That work was
primarily concerned with NFS performance over congested ATM
networks. They found that a high L, in the 10’s of milliseconds,
was quite detrimental. A trace-fed simulation was used rather than a
live system. Moreover, their custom workloads make a quantitative
comparison to our work difficult.

The impact of specific networking technologies (ATM, Autonet,
FDDI) was examined in [9]. Their conclusions are quite similar to
ours: CPU overhead is a dominant factor in NFS performance. We
compare their results to ours in greater detail in Section 6. Their
workload was the precursor to SPECsfs, NFSstone [21]. Some of
their most interesting data, however, came from their measurements
of a large production system.

3 Methodology
In this section we describe our experimental apparatus and method-
ology. We first describe the machines used, followed by two differ-
ent disk sub-systems, which result in two distinct server platforms.
Next, we describe the network. Finally, we detail our technique for
independently scaling the network parameters.

3.1 Experimental Setup

All of the machines in our experiments consist of Sun Ultra-l work-
stations (167 MHz CPU, 5 12K L2 cache, a single 60 MB/s S-Bus
and Solaris 2.5.1). Attached to the S-Bus is an internal narrow SCSI
bus and local disk that holds the operating system and swap space.

73

All the clients have 128 MB of main memory. We use a total of 4
clients: 3 load-generators and 1 master control station.

The primary difference between our two servers is the disk sub-
system. The ‘SCSI” system contains 128MB of main memory and
24 7200 RPM 9GB IBM drives. The drives are evenly divided be-
tween two SCSI buses. The S-bus interfaces used are the fast-wide
Sun “FAS” controller cards. In contrast, the “RAID’ system con-
tains 448 MB of main memory. The 28 7200 RPM 9GB Seagate
disks are contained in a Sun “A3000” RAID. The disks are divided
into 5 RAID level-O (striping) groups; 4 groups have 6 disks and the
last group contains 4 disks. The striping size is 64 Kb. The A3000
contains 64 MB of battery-backedNVRAM which can absorb some
writes that may otherwise have gone to disk.

There are two reasons for investigating different systems. First,
they allow us to draw conclusions about the effects of different
hardware and software, e.g., drivers, main memory, and NVRAM.
Second, having two systems serves as a check on our model; inac-
curacies may show in one system but not the other. In addition, the
RAID is closer in spirit to servers found in published SPEC data.

We use a Myrinet [3] to connect the load generators and server.
The Myrinet network interface contains a “LANai” embedded pro-
cessor which plays a key role in our ability to modify the network
parameters. We have developed a custom device driver which sits
under the TCP/IP stack. Our choice of a Maximum Transmission
Unit (MTU) of 3.5 KB allows for the maximum bandwidth between
pairs of nodes while balancing for the congestion effects of large
packets. Although the links can sustain a rate of 160MB/s, store-
and-forward delays between the S-bus and LANai limit the sustain-
able bandwidth to 26 MB/s (208 Mb/s) for any MTU size. The con-
trol station and other machines are also connected via a switched
lOMb/s Ethernet. The Ethernet is used to start and stop the bench-
mark as well as to monitor results.

3.2 Technique

The key experimental innovation is to modify the communication
layer so that it can emulate a system with arbitrary overhead, la-
tency, gap or bulk bandwidth. The basic idea is to introduce con-
trolled delays in system components (e.g. the network interface)
that correspond to LogP network parameters. The approach is sim-
ilar in spirit to [171.

Varying the overhead, o, is straightforward. Before each send
and before each receive, our custom device driver loops for a spe-
cific period of time before actually writing or reading the message.
The processoris “stuck’in the device driver for the specifiedperiod
and thus cannot perform other operations.

The gap is dominated by the message handling loop within the
LANai network processor. To vary the gap, g, we insert a delay loop
into the LANai’s firmware code path after the messageis transferred
onto the wire and before it attempts to service the next message.
Since the stall is done after the message is actually sent the network
latency is unaffected. Also, since the host processor can write and
read messages to or from the network interface at its normal speed,
overhead should not be affected. We modify G in a similar manner,
except that the delay is a function of the packet size.

The latency, L, requires care to vary without affecting the other
LogGP characteristics. An obvious place to increase L is in the net-
work switches. The “hard-wired” Myrinet switches, however, can-
not be reprogrammed. We are thus forced to modify L at the edge of
the network, either using the CPU or LANai processor. While sim-

Response Time

Delay

Exit ,h,
Figure 3: Analytic Model. This figure shows the simple ana-
lytic model used to validate the results.

ply stalling the send or receive path increases L, it also would have
the side effect of increasing g. Our approach involves adding an
extra delay queue inside the LANai. When a message is received,
the interface processordeposits the message into the normal receive
queue, but defers setting the flag that indicates the presence of the
message. The time that the message “would have” arrived in the
face of increased latency is entered into a delay queue. The receive
loop inside the LANai checks the delay queue for messages ready
to be marked as valid in the standard receive queue. Modifying the
effective arrival time in this fashion ensures that network latency
can be increased without modifying o, g or G.

Once we have a working apparatus, we can derive the sensitivity
of the SPECsfs benchmark to each parameter by scaling the param-
eters in turn and empirically measuring changes to the signature of
the SFS curve. For example, we can measure changes to the base
response time as a function of L. The strong correspondence of the
LogP model to network-system components allows us to identify
which components are most critical to performance. However, in
order to explain these results or make any predictions we need a
conceptual model of the NFS system. The next section introduces
a such a model.

4 An NFS System Model

In this section we describe a simple analytic model of the entire sys-
tem, but focused on the server portion of the system. The goal of
the model is to provide a framework for understanding the effects
of changes in L, o and G on the SFS results curve. We compare the
predictions of the model against two measured SFS curves. Agree-
ment between the model and experimental data builds confidence
in both. Significant differences between the two show where either
the model fails to describe the system, or where the system is mis-
configured and thus not operating “correctly”. In either case, more
investigation may be needed to resolve the discrepancy. We end the
section with the model’s predictions on the sensitivity of the system
to network parameters.

4.1 Model Construction

Figure 3 shows the queuing network we use to model an NFS server,
adopting the simple techniques described in [13, 151. The model
consists of a CPU, disks, NFS cache, and a delay center. Our model
ignores queuing delays in the controllers and I/O bus; they can eas-
ily support the load placed on them given the small nature of most
requests.

74

SCSI RAID
Modeled vs Measured Modeled vs Measured

40
1

40
1

35 35
modeled measured

30 30

8 h 25 % h 25 Qf odeled

Bi= E

20

d - 15

10: 10:

5: 5-
I

Oi~~~~~~,.~..~~,.~~~~~,~~~~.~,.~~~~~,
180 360 580 780 960 1180

NFS Opsisec

(4

04 .,....1.‘.,,,,,.,,.../.,,,,..../
260 480 660 660 1080 1260 1480 1680

NFS Ops/Sec

(b)
Figure 4: Modeled vs. Measured Baseline Performance. This figure plots the modeled as well as baseline SFS curves for the SCSl
system on the left as well as for the RAID based system on the right.

We assume that the clients behave as Poisson processes with a
sum mean arrival rate of X1 requests per second. Because the de-
parture rate must equal the arrival rate, the departure rate is also X1.

The server CPU is the simplest component of the system. We
model it as an M/M/l queue. We derived the average service time,
including all sub-systems (e.g. TCP/IP protocol stacks, and the
local filesystem, UFS) from experimental measurement. For the
SCSI based system, the measured average service time was 900
psec per operation. The RAID system has a lower average service
time of 650 psec. See Section 5.2.3 for a detailed investigation of
the components of the service time.

Most NFS operations have the potential to be satisfied by an in-
memory cache. Only 7% of the SFS 2.0 mix are writes and these
must bypass the cache-NFS version 2 semantics require that they
exist in stable storage before the write completes. The 64 MB of
NVRAM in the RAID can cache writes, however. The file cache
size, and corresponding miss rate, are critical to determining the
base response time as well as the slope of the SFS curve. However,
the SFS strategy of increasing the data set size per op/sec places an
upper limit on the effectiveness of a cache.

We model the NFS caches (both in-memory and NVRAM) as a
splitter. The probability of a hit is given as &t and of a miss as
P - 1 - &$t. On a hit, the request is satisfied and leaves the ntss -
system. Because the data set accessed by SFS increases with the
load, Phrt is a function of X1. We use a simple approach to com-
puting &t. We take the main memory size plus the NVRAM size
and divide it by the accessed data set size. In terms of our model,
the splitting a Poisson stream results in two Poisson streams, X1
and XB. The rate of requests going to the disks is easily derived as
x3 = Pnz*ssXl

The disks are modeled by an M/M/m queue where m is equal
to the number of disks. We have empirically observed using the
ios tat command an unloaded average service time of 12 ms for
the IBM drives. We use the same value to model the Seagatedrives.

We fold the remaining components into a fixed delay center with
a delay of D. These components include the overhead in the client
operating system, fixed costs in the server, and the network latency.
The use of fixed delay greatly simplifies the model, allowing us to
focus on the important elements of the server. We can still obtain
reasonable accuracy using a fixed delay center, however. We empir-
ically observed a D of 3.4 msec. This fixed delay parameter was ob-
tained by observing a small request rate of 300 oplsec on the RAID

Table 1: Linear Regression Models & Accuracy. This table
demonstrates linear regressions of the SFS queuing-theoretic mod-
els and measured data. The table shows the slope of the SFS curve,
(increase in response time vs load), the Y-intercept, the baseperfor-
mance at 200 and 500 ops/sec, and the coefficient of determination
P).

system. At that rate, the entire workload fits into memory, so nearly
all disk requests have been eliminated.

4.2 Baseline Model Accuracy

Figure 4 shows the accuracy of our simple queuing model compared
to the measured data for our baseline systems. The baseline systems
have the minimum L, o, and G, and thus maximum performance
in all dimensions. In order to measure the slope of the SFS curves,
we performed a linear regression on a range of measured data (200-
1050 for the SCSI and 500-1400 for the RAID). Table 1 shows that
within these ranges a linear model is quite accurate; the r2 values
are 0.99 (SCSI) and 0.96 (RAID).

At a qualitative level, we can see that the NFS cache sizes have a
significant impact on the shapes of both the measured and modeled
systems. Below 500 ops/sec for the RAID, the SFS curve is fairly
flat because the cache is absorbing most of the requests. The SCSI
system, with its small cache, has a continuously rising curve. The
slope of the RAID is much steeper than the SCSI system for exactly
the same reason-differences in cache size. In the RAID, the miss
rate increases much more rapidly than in the SCSI system, which
already has a high miss rate.

At a more quantitative level, across the entire range of through-
puts the relative error of the queuing model is at worst 24% for the
SCSI and 30% for the RAID. This is reasonably accurate consider-
ing the simplicity of the model, e.g., we do not model writes by-
passing the file cache. Unfortunately, the queuing model consis-
tently underpredicts the slopes of the SFS curve. Linear regressions

75

of the queuing model predict slopes of 8.5 (SCSI) and 10.4 (RAID)
psec per op/sec. These are substantially lower than the 14.3 and
18.9 psec per op/sec for the measured slopes.

The shape of the inflection point is a second inaccuracy of the
model. In the SCSI system, the measured inflection point is quite
muted compared to the modeled curve. The last point of the mod-
eled SCSI curve, which has no measured counterpart, shows a rapid
rise in response time in the 99+% utilization regime. The real sys-
tem, however, will not enter into that regime. We explore the effects
of high utilizations in Section 5.2.1.

In spite of the inaccurate slopes and inflection point, the queu-
ing model is reasonably accurate for most of the operating regime.
Only at very high utilizations does it deviate much from the mea-
sured values. Interestingly, the r2 values in Table 1 show that the
live system behaves in a linear fashion across almost all of the op-
erating regime, more so than the model would predict.

For the purposes of capacity planning, the queuing model may
be quite acceptable because operating at the extremes of the per-
formance ranges is undesirable. A lightly loaded system wastes re-
sources, while a system operating near capacity results in unaccept-
able response times.

4.3 Expected Sensitivity
Figure 4 showed that the queuing model performs reasonably well
in the baseline network case across a range of loads. Given that we
have reasonable confidence in our model, we can use it predict the
impact of changing each LogGP parameter.

The delay center captures the network latency term. We thus
model an increase in L as a linear increase in D, thereby chang-
ing the base response time. Each psec of added L should add 2
psec to the base response time, because each operation is a syn-
chronous request-response pair. The model also predicts that an in-
crease in L should have no effect on the slope or saturation point. In
the next section, we see that our model predictions for the slope and
saturation point are accurate for a wide range of L values, but not
for extreme ranges. We also see that the model consistently under-
predicts the sensitivity of the base response time to L.

Increasing o we expect changes to all three components of the
SFS signature. The response time should increase because of the
client overhead encapsulated in the D parameter and increased ser-
vice time on the CPU. We expect the slope to increase due to queu-
ing delays at the CPU. The most important effect of o however, is
that the saturation point may be reached at lower load. Because of
the increased service time on the CPU, it will reach maximum uti-
lization sooner. If some other component of the system were the
bottleneck however, we may see a region where the saturation point
is insensitive to o. Our model, however, predicts the CPU will be
the bottleneck. We model the relationship between the saturation
point and overhead as:

Satzbration =
1

Serv + 2.40

Where Serz, is the average CPU service time per operation pre-
vious measured in Section 4.1. The coefficient of 2.4 is the aver-
age number of messages per NFS operation. We model two mes-
sages per operation: a request and a reply. However, as o is incurred
on every message, we also model two extra fragments per read or
write due to MTU effects. Given the frequency and size of reads
and writes, the MTU effects raise the constant to 2.4. The next sec-
tion will show our model of sensitivity to o to be quite accurate.

The bandwidth, &, is not captured well by any single parameter
of the model. If we assume that requests are uniformly distributed
in time, G will have no effect until Xi > $. Indeed, this is a good
test to see if requests are bursty or not. If requests are bursty then
we expect that the NFS system would be quite sensitive to changes
in G.

5 Sensitivity

Given our methodology and NFS characterization, we now empiri-
cally quantify the effect of varying LogGP parameters. To this end,
we independently vary each of the parameters in turn and observe
the resulting SFS curves. For each parameter, we attempt to explain
any observed changes to the SFS signatures based on the model de-
veloped previously. In addition, we isolate the most significant sen-
sitivity for each parameter. For latency this is change in base re-
sponse time as a function of L. For overhead, it is the change in
saturation point as a function of 0.

5.1 Latency

Historically end-to-end latency is often thought of as the critical pa-
rameter for NFS performance [4, 193. In terms of the LogP model,
the typical definition of latency includes both L and o. In this sec-
tion, we examine solely the L term. By focusing on latency alone,
we can better quantify the effects of the network itself, rather than
mixing the effects of the network and end-system.

5.1.1 Response to Latency

Figure 5(a) shows a range of SFS curves resulting from increasing
L for the SCSI system. Likewise, Figure 5(b) shows the results for
the RAID. The range of L has been scaled up from a baseline of IO
psec to 4 msec. For comparison, most LAN switches have latencies
in the 10’s of psec. Most IP routers, which would be used to form a
campus-wide network, have latencies of about a millisecond. Thus
the range explored in Figure 5 is most likely what one might find
in an actual NFS network. We will explore the effect of very high
WAN-class latencies in section 5.4.

All of the SCSI curves “double back” beyond the saturation point
forming a “hook”, like the 4 ms RAID curve in Figure 5(b). We
have truncated the SCSI curves at the saturation point to increase
readability, but present the full RAID data. Because the SFS bench-
mark reports the response time vs. delivered throughput, as op-
posed to offered load, attempts to exceed the saturation point can
result in fewer operations per second than attempted. We will ex-
plore this effect in greater detail in the discussion of overhead.

As predicted by the queuing model, the measured data shows
the primary effect of increased L is to raise the base response time.
Also, as predicted by the model, the slope does not change. Modest
changes in L do not affect the saturation point. However, a high L
can cause the saturation point to fall, as shown by both the 4 msec
curves. The reason for the drop is that insufficient parallelism exists
due to lack of client processes. We have tested this hypothesis by
increasing the number of load generator processes on the client. An
unusual side effect of increasing the number of load generators is a
modest increase in the slope of the SFS curve. We therefore use the
minimum number of load generators that can saturate the system in
the baseline case even if it results in lower saturation points as we
scale L.

76

SCSI

50

10

0
U 200 400 600 800 1000

NFSOpdSec

(a>

I I I I I

L(usec)
10 +
50 -+---

100 .o--
500 x- "

1000 -A--.
2000 -*--
4000 +--

50

5 40
I
E

E" F 30

I
s
% t 20

10

0

RAID
I I I

L(usec)
10 -

0 200 400 600 800 1000 1200 1400 1600
NFSOpdsec

@I
Figure 5: Sensitivity to Latency. This figure plots the SFS curves as a function of latency in microseconds. Measurements for the graph
on the left were taken on the SCSI system, while measurements for the graph on the right were taken on the RAID system.

Returning to the base response time, a key question is what the
rate of increase with respect to L is. That is, for each psec of L
added, what is the corresponding increase in response time? The
next section explores this question in greater detail.

51.2 Sensitivity to Latency

Figure 6 shows the sensitivity of response time as a function of L
for a range of throughputs, i.e., each curve is a vertical slice through
Figure 5(a). Two distinct sensitivity regions are observable. Fig-
ure 6(a) shows the first region has a constant sensitivity of 3 psec of
response time for each psec of added L between 150 - 4000 psec.
This is quite a bit higher than the 2 predicted by the model in Sec-
tion 4.3. Zooming in, Figure 6(b) shows a completely insensitive
region between 10 and 150 ,usec. For the same range of L, the same
result applies to the RAID as well.

An important result is that in the sensitive region, all the sensitiv-
ity curves are a constant 3 across an order magnitude change in L.
Given that the system is responding in a linear fashion, there may
be an accurate way to model it. However, the constant of 3 is quite
a bit higher than the constant 2 predicted by our simple model. A
more complex model is needed to account for the discrepancy.

The insensitive region has important implications for switch and
interface designers as these operate in the 10’s of psec region. From
an NFS perspective, a LAN switch adding 10 ,usec of delay per hop
have little observable impact on NFS performance.

5.2 Overhead

Software overhead, much neglected in networking analysis, perme-
ates the design space because it affects all aspects of the SFS sig-
nature curve. We focus our analysis efforts, however, on its effect
on the saturation point. Not only are these effects likely to be the
most pronounced, but they also will greatly impact the machine size
needed to sustain a given load.

52.1 Response to Overhead

Figure 7 shows the SPECsfs curves for both the SCSI and RAID
systems while scaling overhead from a baseline of 80 ,usec. For the
SCSI we have truncated the results at the saturation point to make
the graph more readable.

Figure 7 shows that the base response time increases as we scale
o, and the measured results are close to the model predictions. The
slope of the SFS curve is fairly insensitive to o until throughput is
near the saturation point. A queuing model gives us nearly the same
result; the slope of the SFS curve will not change drastically with
respect to o. The most dramatic effect of o, however, is on the sat-
uration point.

Figure 7(b) shows what happens to the saturation point in the
RAID when system capacity is exceeded; both response time and
throughput degrade slightly as offered load exceeds the saturation
point. A lesser version of this effect was observable as we scaled
L. An interesting open question is how well the system responds to
these extreme conditions, i.e., how much of the peak performance
is obtainable when the offered load is 150% of peak? Queuing the-
oretic models tell us that response time should increase to infinity
as offered load nears 100%. Figure 7(b) shows that in a real sys-
tem (which is a closed system) the response time hovers around
an overhead-dependent maximum while the delivered throughput
slowly decreases. Feedback loops built into the RPC layer, based
on algorithms in [121, keep the system out of the realm of very high
response times, instead forcing the entire system towards lower
throughput. The algorithms are quite effective; rather than a com-
plete system breakdown we observe small degradations in through-
put and response time. A full investigation of these effects, how-
ever, is beyond the scope of this work.

Because we are scaling a processorresource, the lower saturation
point must be due to the higher service time of the CPU. In the next
sections we will explore the nature of the saturation point. We first
derive the sensitivity curve and then examine the componentsof the

77

SCSI
45 I I I I I I I I

Opshec
40 - 200 - -

400 -+---

35 t
600 -.z-
600 ,x. x

:i.
0 500 1000 1500 2000 2500 3000 3500 4000

Latency (usec)

(a)

SCSI

I I I I I

.._ ..’
_,.. .-x

.. ..--.a
.x .*. .

-..--.-..-..
-.................

---..
.-..- -_,. o ,,.................

.. ~~__._......__............
..8..’

‘-+--* ~~~~..________..____.~.........- ---+-----------------
____._..._____._.. ---------+

Opslsec
200 6
400 -+---
600 .Q..-
800 x

U 200 400 600 800 1000
Latency (usec)

(b)

Figure 6: Latency vs. Response Time. This figure plots response time as a function of latency in microseconds. Measurements were
taken on the SCSI system. The graph on the left shows a range of L up to 4000psec. The graph on the right shows that up to 150 psec there
is little sensitivity to L.

service time for both the SCSI and RAID systems.

5.2.2 Sensitivity to Overhead

Figure 8 shows the relationship between overhead and throughput.
The modeled line shows where the CPU reaches 100% utilization
in the model presented in Section 4, while the measured line is de-
rived from the results in Figure 7. The most interesting aspect of
both systems is that the peak performance drops immediately as we
add overhead; unlike the response to latency, there is no insensitive
region. Therefore, we can easily conclude that the CPU is the bot-
tleneck in the baseline system. Also for both curves, the response
to overhead is non-linear, i.e., for each psec of added overhead, the
peak drops off quickly and then tapers out.

To determine the accuracy of the model, we performed a curvi-
linear regression against the overhead model in Section 4.3. The r2
values of .99 for the SCSI and .93 for the RAID show that our model
is fairly accurate. The sensitivity to o agrees well with the model.

5.2.3 Examining Overhead

The SCSI and RAID system use the same CPU, operating system,
network, and nearly the same number of disks. Yet RAID’s satu-
ration point is much higher. An obvious question is the reason for
the lower performance of the SCSI system. We examined the ker-
nel times with the kgmon utility, which instruments running ker-
nels by statistical sampling. Figure 9 shows the observed percent-
ageof time in each kernel sub-systemfor a 300 second period. Most
of the performance difference between the two systems was due to
the device drivers. The FAS SCSI drivers spend an average of 150
psec per NFS operation while the RAID drivers spend an average
of only 36 @sec. A second interesting result is that a significant
amount of the service time (20% and 26%) are general kernel pro-
cedures which do not fall into any specific category. There are a
myriad of these small routines in the kernel code. Getting an order

50

ii 40
I
5

k! 30 ‘73
I s ::
d

20

10

MB/s (l/G)
25.9 -
14.5 -+---
11.2 -0..-
9.1 --*---
5.8 -a--
2.5 -*

*
,.,

1.2 -*-..

0.
0 200 400 600 800 1000

NFS Ops/Sec

Figure 10: Sensitivity to Gap. This figure plots the SFS curves
as a function of Gap in microseconds. Measurements for the graph
were taken on the SCSI system.

of magnitude reduction in the service time would require reducing
the time of many sub-systems. Much as was found in [5, 141 there
is no single system accounting for an overwhelming fraction of the
service time.

5.3 Bulk Gap

We choose to examine sensitivity to bulk Gap, G, as opposed to the
per-message rate g. First, networking vendors often tout per-byte
bandwidth as the most important metric in comparing networks.

78

I

SCSI

I , I I

?
O(usec)
80-+ -

105 -+---
130 -43.-
180 --x--.
280 -A-- -
480 -*.-

b 30 ..$...

TF
;: ,' /,'

~:

0
0 200 400 600 800 loa

NFSOPslSec

(4

RAID
I I 1 I I

O(usec)

“200 400 600 800 1000 1200 1400 16C
NFSOpskec

(b)
Figure 7: Sensitivity to Overhead. This figure plots the SFS curves as a function of overhead in microseconds. Measurements for th
graph on the left were taken on the SCSI system, while measurements for the graph on the right were taken on the RAID system.

Using our apparatus we can quantify its sensitivity (and thus im-
portance). Secondly, for the SPECsfs benchmark, g is quite low (in
the 1000’s msg/sec range) and is easily handled by most networks.

Unlike overhead, which is incurred on every message, sensitivity
to Gap is incurred only if the data rate exceeds the Gap. Only if
the processor sends data in an interval smaller than that specified
by G will it stall. The clients and server could potentially ignore
G entirely. At one extreme, if all data is sent at a uniform rate that
is less than G we will not observe any sensitivity to Gap. At the
other extreme, if all data is sent in bursts then we would observe
maximum sensitivity to Gap.

Because SPECsfs sends messages at a controlled rate, we would
expect that message intervals are not bursty and the benchmark
should be quite insensitive to Gap. Figure 10 shows that this is in-
deed the case. Only when the bandwidth ($) falls from a baseline
of 26 MB/s to a mere 2.5 MB/s do we observe any sensitivity to G.
We are thus assured that the SFS benchmark is not bursty.

Measured production environments however, are quite bursty [9,
161. Our measured sensitivity to G is thus lower than what one
might expect in a production environment. We explore the impli-
cations of bursty networks to the sensitivity of G in more detail in
Section 6.

Figure 10 shows queuing delays at very low bandwidths that are
not captured by the model. There is a slight increase in slope at a
bandwidth of 2.5 MB/s, and at 10 Mb/s Ethernet speeds(l.25 MB/s)
there is a noticeable increase in slope. Replacing the simple delay
center with a more sophisticated queuing network would capture
these effects. However, given the low bandwidths at which these
effects occur, we have made a quite reasonable tradeoff between
model simplicity and accuracy.

5.4 High Latency

The original NFS protocol was not designed to operate in environ-
ments with very high L. NFS version 3 added several latency tol-

erating techniques, most notably asynchronous writes [20]. In thi
section, we examine the effects of very high L, in the 10’s of mil
lisecond range. For example WANs typically have an L rangin,
from 10’s to 100’s of milliseconds.

Figure 11 compares the relative effectiveness of NFS version :
running on UDP, a typical configuration, to version 3 running o
TCP for networks with high L. The experiment varies both the NFI
version and network transport at once to better understand the tota
impact of an upgrade. Typically, operating systems that ship wit1
version 3 also allow TCP as a transport layer. Both the throughpu
and response times between NFS version 2 and version 3 are no
comparable; thus we examine the percentage of performance 10s
as we scale L.

Figure 1 l(a) shows, as expected, that the “classic” NFS V2/UDI
performance over WAN latencies is dismal. First, the base respons
time is hyper-sensitive to high latency in that it is much greater thal
one would predict from the simple model. Second, very little of thi
peak load is obtainable. NFS Version 3 over TCP is able to handl’
long latencies much better than version 2 over UDP Figure 1 l(b
shows that even at an L of 40 msec (a round trip of 80 msec), Ver
sion 3/TCP can sustain 50% of the peak throughput without addin:
extra clients.

A notable effect on both versions is that average response timi
decreases as the load increases. This could be caused by a num
ber of effects. One possible effect could be the interaction of a ligh
workload with the RPC and TCP transport protocols. These algo
rithms constantly probe the network looking for more bandwidth
Under a light workload however, an insufficient number of packet
may be sent for the protocol to reach a stabilization point in its time
out/re-try algorithm. As both curves are consistent with this theory
it begs the question as to the performance of these algorithms [12
under a very light load.

79

800

f
-ii?
0"

600

5
d

400

200

OL
50 100 150 200 250 300 350 400 450 500 550 600

Overhead(usec)

(4

RAID
1600, I

: 1000 -
e
E
0 800 -

ii
t? 600 -

Modeled -
Measured -+--

400 -

200 -

0’ I
50 100 150 200

Overhead(usec)

(b)

250 300

Figure 8: Peak Throughput VS. Overhead. This figure plots the saturation point as a function of overhead in microseconds. Mea-
surements for the graph on the left were taken on the SCSI system, while measurements for the graph on the right were taken on the RAID
system.

6 Discussion
Given that we can isolate the sensitivity of NFS to network per-
formance, we may consider the implications of our sensitivity re-
sults to L, o and G for emerging networks, the utility of the queuing
model, and the longer term implications of our study. To make our
results concrete, we perform a short analysis of two servers using
data in the SPEC website framed in the context of this work.

Our results show that for typical SAN and switched LAN envi-
ronments, the latency is quite satisfactory for NFS. Latencies under
150 psec are easily obtainable, even when cascading switches, and
further reductions will provide little benefit. For campus-wide net-
works with several routers, obtaining this level may be difficult in
the short term.

In the WAN range, we have seen that the changes to NFS ver-
sion 3 indeed improve throughput. However, such latencies are still
a significant performance drag, as was also found in [4]. Qualita-
tively, the changes in Version 3 have raised the level of NFS perfor-
mance over WANs from “unusable” to merely “slow”. Even with
these enhancements however, it may not be economically viable to
use NFS over WAN ranges. Given the low cost of disk storage com-
pared with WAN links, it may make more sense to replicate the en-
tire data-set. Even for large amounts of data, the storage require-
ments are cheap compared with the recurring costs of WAN links.

Overhead continues to be the performance limiter and this is
where significant performance improvements could be made. Al-
though the networking overhead was only 20% of the entire ser-
vice time, that does not mean that attempts to reduce o will yield
marginal results. Indeed, networking overhead is one of the primary
components of the service time. However, a number of subsystems
must be improved at once for significant progress to be made. For
example, a combination of novel overhead reducing interfaces be-
tween major OS sub-systems, disks and network interfaces might
yield significant improvements. A similar conclusion as was found
in [9] as well. The study examined 3 points in the networking space

(ATM, Autonet and FDDI), rather than systematically varying over-
head. However, it is encouraging that two different studies have
come to the same conclusions by much different methods.

The SPECsfs workload has minimal bandwidth needs and is
quite regular; generating traffic on the order of single MB/s. How-
ever, real networks exhibit quite bursty behavior and thus band-
width requirements would be higher, but not into the gigabit range.
Network technologies such as switched 1OOMb Ethernet and 155
Mb ATM provide plenty of bandwidth for NFS workloads. Given
that most NFS packets are quite small, overhead, rather than band-
width, will still be the dominant factor facing future network de-
signers.

In the longer term, the latency reductions from IP switches will
have a large impact on NFS. The order of magnitude drop in L from
the millisecond to the lo-20 psec region [24, 251 will expand the
range of NFS to a much wider area. Recent switches also offer in-
creased port densities, ranging to 100’s of ports at 100 Mb Ethernet
speeds. A network composed of these low-latency, high-density IP
switches would expand the range of NFS service to a whole campus,
even multiple campuses, instead of its traditional domain, a build-
ing. The implications of such anexpansionare interesting; NFS ser-
vice could reach a much larger number of machines than previously
possible.

Simple queuing models are quite effective in analyzing the be-
havior of an NFS server. We were able to model changes in re-
sponse time, slope and saturation point for a variety of parameters.
However, more investigation is needed to better describe the effect
of latency on response time.

We empirically measured and validated the inputs to the model.
One could, however, obtain close to the same inputs for a spe-
cific configuration by looking at the published data [23]. Using
the SPEC data and assuming our model framework, it is relatively
straightforward to deduce the parameters of the queuing model for
a specific configuration from the published SFS curves.

80

Examining the NetApp F630 and AlphaServer 4000 5/466
SPECsfs results is instructive. They have roughly the same CPU
(500 MHz Alpha), but the Alphaserver has twice the main memory
and disks as the NetApp box. The NetApp box however, has half
the base response time, a much lower slope, and a higher saturation
point. Putting the results into the context of this work, we can con-
clude that Network Appliance was quite successful in their bid to
reduce overhead via a specialized operating system [IO]. Another
approach to obtaining a higher saturation point is to add processors,
demonstrated by the 18 CPU Sun system. Such an approach would
not reduce the base response time, however, unless the operating
system can parallelize a single NFS operation.

7 Conclusions
We have developed a simple model and empirical method for ex-
ploring the sensitivity of NFS to various aspects of communica-
tion performance. Simple queuing models are reasonably accurate
in characterizing NFS server performance. Our parameterized ap-
proach was quite effective in exploring the network design space as
well. By varying each LogP component in turn we can pinpoint the
sensitivity to each software/hardware component in isolation.

Our results show that NFS is quite sensitive to processor over-
head. Significant reductions in overheads will be critical for fu-
ture servers to utilize emerging multi-gigabit networks. Overhead
reductions will have to come from two places: improvements to
networking stacks and the local filesystem. However, a significant
component of the overhead in our testbeds came from general ker-
nel code with no easily identifiable source sub-system.

We found that NFS is quite insensitive to network bandwidth.
Our choice of benchmark offers a very controlled load on the server.
This fact combined with the small size of most NFS operations ac-
counts for the low sensitivity to bandwidth. Given that real traffic is
bursty our sensitivity result to bandwidth is lower than what would
be seen in a production environment. Even assuming the worst-case
behavior, however, gigabit LANs will not bandwidth-limit NFS.

NFS is quite insensitive for latencies of a typical high-
performance LAN. Newer LANs will have even lower latencies as
switch degrees increase. However, when crossing into the current

IP routing regime of milliseconds latency does have an impact. It
will be interesting to see if NFS is used over a wider area as IP
switching becomes more common.

Our results show that NFS version 3 exhibits better tolerance to
high latencies than version 2. In addition, at very high latencies our
model breaks down; the system exhibits a hyper-sensitive response
at WAN-class latencies on the order of 10’s of milliseconds.

Acknowledgments
We would like to thank John Ousterhout for motivating this study.
We would also like to thank Brian Wong, Drew Rosselli and Randy
Rettburg for their comments.

References

NFS version 2

rII;j

200 400 600 800 1000 1200 1400 1600
OPs/sec

(a>

NFS version 3
300 I I I I I I

x baseline -+
L=l Oms -+--.

250 -
;, L$Oms -0.--

I =Anms

200 -

150 -

100 -

50 -

“0 100 200 300 400 500 600
NFS V3 OPslsec

(b)

Figure 11: Effects of Very Long Latency. This figure plots the SFS curves as a function of very high latencies on the RAID. Measure-
ments for the graph on the left were taken using NFS Version 2 over UDP, while measurements for the graph on the right were taken using NFS
Version 3 running over TCJ? The figure is designed to show the relative performance degradation for each version as neither the operations/set
or the response times between versions is comparable.

171

PI

[91

[lOI

illI

[121

r131

[141

[I51

[161

[171

GILLETT, R. B. Memory Channel Network for PCI. In IEEE Micro
(Feb. 1996),vol. 16,~~. 12-18.

GUSELLA, R. A Measurement Study of Diskless Workstation Traffic
on an Ethernet. IEEE Transactions on Communications 38,9 (Sept.
1990), 1557-1568.

HALL, J., SABATINO, R., CROSBY, S., LESLIE, I., AND BLACK,
R. Counting the Cycles: a Comparative Study of NFS Performance
Over High Speed Networks. In Proceedingsof the 22ndAnnual Con-
ference on Local Computer Networks (LCN’97) (Minneapolis, MN,
Nov. 1997), pp. 8-19.

HITZ, D., LAU, J., AND MALCOLM, M. File system design for an
NFS file server appliance. In Proceedingsof the Winter 1994 USENIX
Conference (San Francisco, CA, Jan. 1994), pp. 235-246.

HORST, R. TNet: A Reliable System Area Nework. IEEE Micro 15,
1 (Feb. 1995), 37-45.

JACOBSON, V. Congestion avoidance and control. In Proceedings of
the ACM SIGCOMM ‘88 Conference on Communications Architec-
tures and Protocols (Stanford, CA, Aug. 1988). pp. 314-329.

JAIN, R. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 199 1.

KAY, J., AND PASQUALE, J. The Importanceof Non-Data-Touching
Overheads in TCP/IP. In Proceedings of the 1993 SIGCOMM (San
Francisco, CA, September 1993), pp. 259-268.

LAZOWSKA, E. D., ZAHORIAN, J., GRAHAM, G. S., AND SEVCIK,
K. C. Quantitative System Per&ormance : Computer System Analysis
Using Queueing Network Models. Prentice-Hall, Englewood Cliffs,
N.J, 1984.

LELAND, W. E., TAQQU, M. S., WILLINGER, W., AND WILSON,
D. V. On the Self-Similar Nature of Ethernet Traffic. IEEE Transac-
dons on Nerworking 2, 1 (Feb. 1994), l-15.

MARTIN, R. P., VAHDAT, A. M.,CULLER,D. E., AND ANDERSON,
T. P. The Effects of Latency, Overhead and Bandwidth in a Cluster of
Workstations. In Proceedingsof the 24th InternationalSymposium on
Computer Architecture (Denver, CO, June 1997).

1181

1191

PO1

Pll

WI

1231

~241

~251

LW

[271

MOGUL, J. C. Network locality at the scale of processes. ACM Trans-
actions on Computer Systems 10,2 (May 1992), 81-109.

OUSTERHOUT, J. K. Personal communication, Jan. 1997.

PAWLOWSKI, B., JUSZCZAK, C., STAUBACH, P., SMITH, C.,
LEBEL, D., AND HITZ, D. NFS Version 3 Design and Implemen-
tation. In Proceedings of the Summer 1994 USENIX Conference
(Boston, MA, June 1994),pp. 137-152.

SHEIN, B., CALLAHAN, M., AND WOODBURY, P. NFSSTONE -
A Network File Server Performance Benchmark. In Proceedings of
the 1989 USENIX Summer Conference (Baltimore, MD, June 1989).
pp. 269-274.

STANDARD PERFORMANCE EVALUATION CORP. SPEC SFS97
Benchmarks, 1997. http://www.specbench.org/osg/sfs97.

STANDARD PERFORMANCE EVALUATION CORP. SPECsfs97 Press
Release Results, 1997. http://www.specbench.org/osglsfs97/resul&.

STRATEGIC NETWORKS CONSULTING. ForeSystemsIntelligent Gi-
gabit Routing Switch Custom Test, Oct. 1998. http://www.snci.com/-
reports/ESX-4800.pdf.

STRATEGIC NETWORKS CONSULTING. Packet Engines PowerRail
5200 Enterprise Routing Switch Custom Test, Apr. 1998. http://www.-
snci.com/reports/packetengines.pdf.

WITTLE, M., AND KEITH, B. E. LADDIS: the Next Generation in
NFS File Server Benchmarking. In Summer I993 USENIX Confer-
ence (Cincinnati, OH, June 1993). pp. 111-128.

WONG, 8. Conjigurationand Capacity Planningfor SolarisServers.
Prentice-Hall, 1997.

82

