
WFS: A Simple Silared File System for a Distributed Environlnent 

by Daniel Swinehart, Gene McDaniel, anti David Boggs 
Xerox Palo Alto Research Center 

3333 Coyote Hill Road 
Palo Alto, CA 94304 USA 

Abstract: 

WFS is a shared file server available to a large network 
community. WFS responds to a carefully limited repertoire of 
commands that client programs transmit over the network. The 
system does not utilize connections, but instead behaves like a 
remote disk and reacts to page-level requests. The design 
emphasizes reliance upon client programs to implement the 
traditional facilities (stremn IO, a directory system, etc.) of a file 
system. The use of atomic commands and connectionless protocols 
nearly eliminates the need for WFS to maintain transitory state 
information from request to request. Various uses of the system are 
discussed and extensions are proposed to provide security and 
protection without violating the design principles. 

1. hitroduction 

Existing file systems implement different levels of 

service for their clients, and correspondingly leave 

different amounts of work for the clients to do. 

Traditionally, file systems have evolved to provide more 

and more functionality from simple file access to 

complicated arrangements which provide sharing, security, 

and distributed data storage. 

This paper describes wF:S, a file system that provides a 

concise set of file operations for use in a distributed 

computing environment. Designed by the authors in 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the ACM copyright notice 
and the title of the publication and its date appear, and notice 
is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

© 1979 ACM 0-89791-009-5/79/1200/0009 $00.75 

1975, and built by one of us (Boggs) in tinder two months, 

WFS has successfully supported a number of interactive 

applications. 

The filing needs of Woodstock, an early office system 

prototype, dictated the functional and performance 

criteria of WFS.  Woodstock provided facilities for 

creating, filing, and retrieving simple office documents, 

and . a rudimentary facility for exchanging these 

documents as electronic messages. 

Woodstock's hardware environment was a network of 

minicomputers, each providing specialized functions 

(terminal control, editing, filing, message services, etc.) in 

support of the overall application. WFS was designed as 

the shared filing component, storing Woodstock 

documents on high-capacity disks attached to one of these 

processors. 

During development, Woodstock used small local 

disks on each editing processor. The software that 

supported the editing application had to provide facilities 

for transforming access to physical disk pages into higher- 

level functions. These included character and word 1/o, 

file positioning, and functions for opening and closing 

files. The application also implemented its own 

hierarchical document directory structure. 

wFs was designed after the rest of the system was 

operational. Consequently, it was easy to define its 

functional specification, since Woodstock already 

provided the higher-level functions. The local file access 

was to be replaced by network access to a shared file 

system running on another machine. A file system based 

upon page-level access to randomly addressable files 

would be adequate, and a small amount of file sharing 

needed by the application could be accommodated by a 

simple locking mechanism at the file level. A two month 

limit on implementation time, combined with a conviction 

that a very simple file system organization could achieve 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800215.806564&domain=pdf&date_stamp=1979-12-10


the same purposes as existing more complex designs, led 

to the system described here. 

2. System Description 

Z I  The Client's File System Model 

In this paper, a server is a program that supplies a 

well-defined service over a computer network to client 

programs, which use the service to implement some appli- 

cation. A client program may or may not be operating in 

direct response to the actions of  a human user. 

WFS is a server that provides its clients with a 

collection of files. It is currently implemented on a 

dedicated Xerox Alto research minicomputer [Thacker et 

a0 augmented by one or more disk drives, each with a 

transfer rate of  around 7 megabits per second and a 

capacity of  from 80 to 300 megabytes. A WFS file 

contains up to 60,516 data pages, each 246 16-bit words 

long. Clients may write pages in any order, and WFS 

waits to allocate space for a page until it is first written. A 

file is denoted by a 32-bit unsigned integer, its f i le  

identifier (1:[19). WFS allocates FIDs for new files, on 

request, from a single name space. There is no additional 

naming or directory structure within the system. For  this 

reason, and because of  the carefully limited repertoire of  

operations, an application programmer might well choose 

to view each FID as a handle on a "virtual disk", 

interfaced through a moderately intelligent controller. 

Z2 wpS Operations 

The complete set of  WFS operations is shown in 

Table 1. Each operation involves an exchange of  network 

packets using the protocol described in the next section. 

The operations partition into four groups, used for: 

• Reading and writing pages of  files 

• Allocating and deallocating I=lDs and pages of  files 

• Obtaining and modifying file properties 

• Performing system maintenance activities 

The most commonly executed operations are those 

used for reading and writing a selected file page, given its 

FID and page number. A number of  page properties are 

returned along with each page that is read (see below), 

and client modifications to some page properties may be 

specified during each write operation. 

~[lqe second group of  operations allows one to create a 

file (with no assigned pages) and obtain its FID, to 

expunge a FID (illegal if  any pages remain), and to de- 

allocate the storage for a page. In addition, there is an 

operation that allows a client to create a file with an 

explicitly specified FID value. WFS reserves a range of  FID 

values for this purpose when it creates a new file system. 

Operation Description 
Page Transfer  

ReadPage(fid,pageNum) 
WritePage(fid,pageNum,lock,page properties) 

File Management 
GetFID0 
ExpFID(fid) 
DeallocatePage(fid,lock, pageNum) 

Status Query/Modification 
GetFIDStatus(fid) 
SetFIDStatus(fid,mask,value) 
ReadPageMap(fid,lock, pageMapNumber) 

Read or write page properties and page data 

Allocates a new file and returns its lid 
If rid has no pages allocated, expunges (deletes) the file 
Releases storage for page and removes page from page map 

Return file status values 
Set client status values, ignore attempt to affect system values 
Return page map information to determine which pages are allocated 

Lock(rid) 
UnLock(rid) 

Maintenance 
ReallocFID(fid) 

ResetLastFID(newFid) 

ReadRealPage(realAddress) 

GetVMap0 

WFSPing0 

Return key, required in subsequent operations until file is unlocked 
Unlock file (set lock to zero) 

These operations allow examination of the system at the disk logical 
and physical page level. In addition, the FID allocation routines 
can be used to restore the file system using backup information. 

WFS merely acknowledges this operation. It allows one to check the 
oasic communications path. 

Table 1. WFS Operations 

10 



~[11e third group allows the client to find out what file 

pages are allocated, and to examine a FID's current file 

properties. One of  the operations allows the cfient to 

modify those file properties that are under its control. 

The fourth group provides maintenance facilities. 

Utility client programs use them to copy WFS files to a 

backup store, restore selected files, rebuild WFS volumes 

flom backup, and repair client-level file structures. 

2.3 Properties 

WFS associates with each data page a set of  page 

properties, some of  which are of interest to the client (see 

Figure 1). WFS reads and writes the page properties along 

with the data. The first few fields provide a safety check 

since they duplicate the FID and page number, and the 

system checks them on each page access. They may also 

be used by low-level crash recovery routines to reconstruct 

damaged file structures. The client fields are assigned and 

interpreted by the client. The client may ask WFS to 

compare a page's client properties against the ones 

supplied in a command, and to abort the command if  they 

fail to match. This allows the system to validate client 

assertions about the page in question. 

Page Identification 
(Fid, Page Number) 

Date and Time 

System Private 

Client Private 

Page 
Identification 
(10 words) 

Page 
Data 
(246 words) 

Figure 1. WFS Disk Page Format 

Similarly, each FIb has a set of  file properties (see 

Figure 2). The system uses some of this space to record 

the status of  the file directory entry (free, allocated, 

deleted, expunged). The client cannot change these. 

Other properties are cooperatively maintained by the 

system and its clients. Whenever a file is dirtied, WFS sets 

the file's dirty bit. A client that desires higher reliability 

may backup dirty files and then clear this bit. Finally, 

some space is reserved for client-private uses; WFS does 

not touch these properties. 

FID 

File Location 
Page map disk address 

FID Properties 
System private 
Client/System shared 
Client Private 

Figure 2. FID Directory Entry 

2.4 File locks 

A client may lock a file, preventing access by anyone 

without the proper" key. The lock operation returns a key 

that must be supplied with all subsequent operations on 

the file, until either" the client ussues an unlock operation 

or the lock breaks. WFS will break a file's lock if no 

operation has been performed on the file for a minute or  

so. A system restart breaks all locks. A key of  zero fits an 

unlocked file. A client can detect a broken lock because 

the non*zero key will not fit the lock on an unlocked file. 

key lock access file state 

0 0 allowed unlocked 
0 X denied locked 
X X allowed locked 
X Y denied locked 
X 0 denied unlocked 

These locking operations provide primitives that are 

adequate to implement completely safe sharing 

mechanisms (see section 4.2.) 

Z5 Communications Protocol 

Within the Xerox research community, the foundation 

for process-to-process communication is an internetwork 

packet (or dalagram), as opposed to a stream (or virtual 
circuit) [Boggs et al]. However, many of  the applications 

that use the Xerox internetwork choose to hide the packet 

boundaries and to assure reliable transmission by means 

of a stream Facility constructed from the packet protocols. 

A stream is an example of a connection-based protocol: a 

substantial amount of  state must be correctly maintained 

at both ends for the duration of  the connection. 

The WFS protocol, on the other hand, is based on the 

direct transmission of  internetwork packets, and does not 

rely on the reliable delivery of  every packet. WFS 

provides an example of  a connectionIess protocol: the 

11 



server maintains no state betweon packets, and the client 

maintains very little--often none. 

To perfom~ a WFS operation, a client constructs a 

request packet containing the operation code  and any 

necessary parameters, and sends it to the selected WFS 

host (see Figure 3). WFS processes commands in the 

order in which they arrive and then returns a response 

packet to the sender. The response contains the requested 

data or a failure code. The server is entirely passive: it 

never initiates activity, but only responds to requests. 

PUP header 
Network info, process id 

message length, etc. 
Visible to network 

software only 

Operation Code 
ReadPage, ExpFid, etc 

Request /Reply  
Parameters 

Lock, file properties 

Page Data 
if required (246 words) 

Software Checksum 
visible to network 
software, only. 

WFS Disk 
Page Format 

Figure 3. Request /Acknowledgment  Packets 

Since the reliable delivery of  request packets and their 

responses is not guaranteed, the client must take the 

appropriate steps to assure robust performance. It usually 

suffices to retransmit a request if a reasonable interval has 

elapsed without receiving its response. The operations are 

designed so that any write action will have the same effect 

if it is repeated. In addition, it must not be possible for 

packets to be delayed for so long that write and read 

operations can occur out of  order without detection. This 

behavior is not difficult to arrange in our environment, 

but would have to be dealt with if the methods were 

generalized. 

2.6 File Syslem Implementation 

WFS is written in BCPI. [Richards], supported by a 

simple custom-tailored operating system and communica- 

tions package. 

For each file, WFS maintains a page map that 

translates client page numbers into physical disk addresses 

and identifies unallocated pages. Depending on the 

current length of  the file, the page map is either one or 

two levels deep (see Figure 4). 

The FID directory is a hash table implemented as a 

contiguous, fixed-size file at a known disk address. 

Entries in the directory associate FIDS with their 

corresponding file properties and top-level page map 

locations. 

FID Direr.tory 

IPageMaPh__ 

Data 

a [ - - - - - ] D a t a  PageMaPL IPagel 

Data 
Page 244 

lea I a,,o Map 0 

1 Leaf D2;a 244 
Map 1 

Leaf - ]  Data 
Map 244 ~ Page 245 

Data | Page 
/ 

Figure 4. WFS File Structure.  Small files use a 
single page map level, while larger files use a two 
level map. Empty data pages are not allocated on 
the disk. 

12 



A single process interprets client operations in the 

WI:S server. This process sequentially extracts request 

packets from the network input queue, checks them for 

validity, and dispatches to the indicated operation. When 

the operation completes, the process returns a response 

packet to the requesting client. By using this simple, 

sequential scheme, lockup behavior is impossible, and 

starvation (unfair treatment of  a particular client) is very 

unlikely. 

During a write operation, WFS reads the specified data 

page (and in some cases auxiliary pages) before writing it, 

in order to validate its FII), page number, and other page 

properties. If a discrepancy is found, the operation is 

rejected (see section 2.5.) The system writes the data into 

its assigned disk page immediately, before returning the 

acknowledgment packet. 

Although a WFS application will occasionally make 

closely spaced references to the same data page, such 

references are not frequent enough to warrant special 

treatment. However, multiple references to auxiliary disk 

pages (page maps, directories, and allocation bit tables) 

predominate. For this reason, WFS uses a substantial 

percentage of main memory as a write-through cache of  

recently referenced disk pages. Discarding the least 

recently referenced page whenever cache space is needed 

favors retention of  the auxiliary pages, while 

accommodating the infrequent case of  closely spaced 

accesses to the same data page. 

Since pages to be changed are always written 

immediately, the cache is entirely redundant and is 

maintained for efficiency only; any page of  it, or all of  it, 

can be discarded for any reason (including a system crash) 

without affecting tile integrity of  the file system. 

27 Performance 

WFS has never been used in an environment subject to 

a high volume of  concurrent accesses by a large number 

of hosts. However, we did measure its performance under 

a heavy load generated by one to three hosts running the 

Woodslock application. Table 2 provides the performance 

figures obtained from these tests (see [McDaniel] 

regarding the network-based instrumentation tool). The 

table compares both reading and writing times of  WFS 

with times obtained by performing the same activities 

using the local disk. The wl:s times include the cost of 

the client's service routines that provide packet 

composition, transmission and response interpretation 
activities as well as the actual wt:s software and disk 

access times. In each case, one or more Woodstock users 

manually produced a very high request rate. While the 

table doesn't detail this observation, we found that the 

network transmission times through the high-bandwidth 

Ethernet local network [Metcalfe-Boggs] were negligible. 

Measurements of subsequent server/client configurations 

have produced comparable results. 

Write operations yielded poorer results than read 

operations in the tests because wt:s reads data pages to 

valiclate them before writing new contents (see section 

2.6). 

In tile single-user (lightly loaded) case, WFS improved 

Woodstock's average input response time over the local 

disk's time for several reasons: WFS'S disks were faster 

than Woodstock's local disks, requested pages were 

sometimes still in the WFS main memory cache, and the 

amount of  arm motion on the local disk was reduced 

because it no longer had to seek between a code swap- 

area and the user data area .  

In general, performance has been adequate for a 

number of  nontrivial applications. Notice that the 

measurements exhibit nearly linear degradation with 

increasing load. A system implementing more 

sophisticated scheduling methods could improve this 

perfo~Taance. 

Read Page AVG MIN M A X  

Using Local  Disk 60  30  90  

WFS with one user  4 8  20  2 6 0  

with two users 76  20  3 3 0  

with three  users 1 0 0  20  3 3 0  

All times in milliseconds 

Wr i te  Page AVG MIN M A X  

Using Local Disk 47  10 1 1 0  

W F S  with one user  73  30  2 6 0  

with two users 1 0 9  30  3 5 0  

with three  users  1 5 0  4 0  4 2 0  

Tab le  2. W F S  P e r f o r m a n c e  Observa t ions .  In multiple-user 
experiments, system users manually produced extremely 
demanding loads. Maximum load for the same number 
of users could, be somewhat greater. 

13 



3. Design Philosophy 

The principle theme of  the wFs design is that client 

programs must provide the higher-level abstractions 

usually associated with file systems, while WFS 

implements a simple, low-level abstraction with relatively 

few operations and with high reliability. Low-level, 

reliable file service in WFS stems fi'om its passive, atomic 

operations which are characterized by the following 

properties: 

• Each operation may access at most one data page, 
and no more than a few auxiliary disk pages. 

• Each operation runs to completion before WFS 
acknowledges it. A write operation is not complete 
until the data is on the disk. Between operations, 
wF'S retains no state information that can not be 
regenerated from the contents of the disk. 

• Command and protocol boundaries are the 
same--each command and response comprises a 
single intel'net packet. 

• Clients access the server through connectionless 
protocols--each packet proceeds independently over 
the network. 

The receipt of  a command acknowledgment is an 

assurance that the overall integrity of  the file system is 

correct at the "virtual disk" level. This means that a 

subsequent crash recovery or other reinitialization in 

either the client or the server will be invisible except for a 

possible time delay. Although this approach places 

additional burdens on the client and ultimately limits the 

efficiency of  deletion and copy operations, it simplifies the 

protocol design by limiting operations and responses to 

single packets. It also improves the ease with which a 

reasonable and fair response to client requests can be 

guaranteed. We believe this property was crucial to 

meeting our time constraints for implementing 

Woodstock. 

The connectionless protocol frees WFS fi'om the 

requirements of  maintaining communication state 

information during client interactions, and reduces the 

work clients must do to communicate with wFS. Since we 

have found that the size and computing overhead of  high- 

level communication code often exceeds that needed to 

provde the higher-level abstractions, this reduction 

becomes more important when client programs are 

implemented on personal computers which may not be 

particularly powerful. 

If the client receives an acknowledgment for a write 

request, then the write operation has clearly occurred. 

The write algorithms are also constructed to reduce the 

possibility that the state of  the file system can become 

inconsistent at the file and page level. Therefore, our 

atomic property provides a high probability, but not an 

absolute guarantee, that an unacknowledged write request 

has been performed either in its entirety or not at all. The 

WFS system and protocol have no facilities for assuring 

that higher-level transactions involving changes to 

multiple data pages have this property, although a client- 

based algorithm can achieve this goal [Paxton]. 

4. Functional Capabilities and Implications 

This section examines the extent to which the WFS 

design can support generally useful file system activities. 

We first look at uses that do not involve the sharing of  

files, then extend the discussion to shared applications. 

Finally, we consider the comparative cost to the client of  

using WFS instead of  a more functionally rich system. 

4.1 Single User Applications 

We contend that, for uses that do not involve sharing, 

wFS is functionally sufficient, since a more traditional 

system (e.g., character-level 1/O and directory functions) 

can be built using the "virtual disk" provided by the page 

access operations. A single implementation of  these 

facilities might well satisfy the needs of  a number of  

applications. Our application was Woodstock; other 

applications are described elsewhere [Paxton], [Shoch- 

Weyer]. 

Clients must provide their own naming and file 

directory structures. If  an application creates a file and 

forgets the FID returned by WFS, the file is lost, although 

client programs can be written to scan the t'ID directory 

and find it again. The Woodstock application implements 

a directory by keeping FIDS "hidden" in text files where 

document names are referenced. Since the FID is a 

sufficient handle to access the file, Woodstock can easily 

and efficiently find a file regardless of  the context of  its 

reference. Other applications have made quite different 

arrangements, all of which are of  no concern to WFS. 

We have found that it is straightforward to rewrite 

device drivers using network communications rather than 

driving the disk directly. Since WFS makes no 

assumptions about the structure of application P, les except 

that they are a sequence of  pages, specific Ftle structures 

are conventions enforced only by the application. For 

example, the conversion of  Woodstock to Wl:S instead of  a 

local disk required no file structure modifications. 

"14 



As indicated in section 2.5, some network 

configurations can lead to the arrival of  so-called delayed 

duplicate packets, which can cause write and read 

operations to occur out of order. The rather primitive 

communication protocols in WFS would need to be 

augmented lbr the system be be usable in an environment 

where this behavior was possible. One approach would 

be to retain sufficient mutual state information between 

client and server hosts (i.e., a simple connection) that 

packets arriving out of  order could be detected and 

discarded. The packet sequence numbers used to detect 

delayed or fiatldulent packets would be allowed to repeat 

only over extremely long intervals (raonths or years.) See 
[Lampson-Sturgis] for an example of  this approach. 

4.2 Shared Applications 

In examining w[:s's ability to support shared access to 

files, it is usefiil to consider the following three categories 

of file system state: 

Long-term information endures throughout a file's 

lifetime or longer. Examples are the data files 

themselves, the system allocation tables, and the 

FID directory. 

Medium-term information is retained across atomic 

operations. The timeout lock that enables the 

sharing of data is the only medium-term state WFS 

keeps, whereas traditional file servers also maintain 

medium-term information associated with 

communication connections, open files, and the 

like. 

Short-term information is the state that must be 

kept during the execution of  an atomic operation. 

In WFS, though there may be large amounts of  

such info,'mation, all that state may be discarded 

after an operation completes without sacrificing the 

integrity of  the file system. 

Clearly, the maintenance of  medium-term information 

is necessary for any reasonable set of  file system facilities. 

We believe that the client can maintain all such 

information, except for that required to enable the locking 

of  data when shared access is possible. The goal is an 

overall improvement in the size and cleanliness of  the 

total system. 

wFS's medium-term lock information must also be 

augmented by client activities to obtain file sharing with 

behavior that can be guaranteed. While Woodstock's 

approach to sharing is quite primitive, Paxton discusses 
the design of  a file system that uses WFS as its base and 

that provides reliable shared access to user files [Paxton]. 

Clark describes time limit locks in a shared resource 

system. In his system, to device routines implemented on 

top of  a virtual memory facility must implement reliable 

service, in the presence of  memory locks which will break 

after their time limits expire [Clark].. The DFS [Israel et 

at] system uses time limit locks as part of its approach to 

sharing, although DFS itself handles lock timeouts. 

4.3 Cost Considerations 

Implementing the higher abstractions on client 

machines costs them code space and execution time, 

although much of  this expense is recovered because the 

interface to the server is simpler. Correspondingly, WFS 

saves code space which it may use for disk buffers, and 

saves execution time which it may provide to more users. 

Our insistence upon the atomic operations property 

has led to some objectionable inefficiencies. An obvious 

example is the requirement that clients deallocate files, 

one page at a time, in order to delete them. Another 

drawback is that there is no provision for high-speed 

access to consecutive pages. In section 5.2 we suggest 

some sinqple extensions to handle these kinds of  

operations. 

5. Possible Extensions 

5.1 Privacy and Security 

Any host that can communicate with WFS has full 

access to all operations on all wFs files. Thus, security 

cannot be guaranteed, and privacy can be guaranteed only 

if the application encrypts everything. In this area alone 

wFs is not adequate to meet the functional needs o f  a 

generally useful file server (see [Birrell-Needham] for a 

discussion about the attributes of a universal file server). 

For our experimental applications, the absence of  

server-enforced security was reasonable, because security 

and privacy were supplied by application programs. 

Again, we were willing to impose more responsibility on 

the client, in return for the flexibility to experiment with 

different user-level protection schemes, or to defer 

protection issues altogether. 

Methods for communications privacy and for access 

control would have to be added to wPs to achieve 

acceptable security in a more hostile environment. By 

15 



applying recent work in both these areas, this could be 

accomplished without affecting the simplicity or 

robustness of  the current design. 

Communications privacy (see [Kent] for a general 

discussion) - can be supplied by a number of encryption 

approaches, and can be compatible with the atomic, 

connectionless design of  wFS. The methods developed in 

[Needham-Schroeder] and [Rivest el all are particularly 

relevant to this application. 

Flexible use of  a file server causes more problems 

than an encryption system can handle easily, but they are 

problems that a capability-based access mechanism can 

solve [Birreil-Needham]. One reasonable approach fo r  

wFS would adapt a method, described in [Needham], for 

adding capability access to a conventional file server that 

has login authentication. To perform an operation, a 

client would now have to present an unforgeable 

capability for a file instead of the file's FID. The file 

system would create and return such a capability in 

response to a file creation request from an attthenticated 

user. This initial capability would allow the possessor 

arbitrary access to the file. Additional operations would. 

allow the client to request different capabilities for the 

same file, with restricted access rights (e.g., read-only). 

Such capabilities could be passed safely to other users. 

Clients would use these capability facilities to produce 

applications exhibiting the desired user-level protection. 

WFS would implement these capabilities as records 

encrypted with a private key. The records would include 

the FID and the file access rights associated with the 

capability. The capability generated at file creation time 

would grant full rights to the creator. This approach 

would allow WFS to locate the relevant FID, check access, 

etc., by merely decoding the incoming capability, without 

the need for additional information. The required user 

authentication could be handled by supplying an 

operation that would return a "user identification 

capability" when presented witli a user name and correct 

password. 

In this section we have discussed minor extensions to 

WFS that would increase the privacy and security of  its 

transactions without sacrificing the partitioning of  client 

and server responsibilities. However, to build into the 

server the additional transaction-based interlace that 

Paxton produced in the client machine [Paxton] would 

require a fundamental redesign. Systems that provide 

capability or transaction-based facilities at the server level 

are reported in [Needham-Birrell], [israel et al], and 

[Birrell-Needham]: 

5.2 Changes for Efficiency 

The performance of wFs is ultimately limited by one 

of  its strengths: the independence of  each page-level 

request. When it is known that an application will require 

the successive use of a substantial mnnber of  contiguous 

file pages, much better performance would be possible if 

this knowledge could be used to optimize their transfer to 

and from the disk. One way to do this would involve 

extending the command set to include an explicit 

statement that a range of  pages will be needed, counting 

on the server's page caching methods to transfer them 

efficiently into its main memory in advance of  their use. 

Another method would not involve any new commands, 

but would require the elaboration of  the command 

interpreter to allow the processing o f  more than one 

incoming operation at a time. Information about 

sequential disk access could be passed on to the disk- 

management level, where the same efficient transfer 

scheduling decisions could be made. 

Although the network software and hardware delays 

are smaller than disk access time, they are not negligible. 

The latter method above, allowing multiple outstanding 

requests, could also result in an average increase in 

network throughput. 

If the basic page transfer performance were improved, 

one major source of inefficiency would remain: the 

absence of  operations for deleting entire files, copying 

their contents, etc. These operations were omitted in 

order to guarantee the client response times and file 

integrity properties discussed at length above. It would be 

straight[brward to spawn a process within WFS to submit 

successive page-level requests (at the same priority as 

client requests) until the task was complete. System 

integrity at the virtual disk level would not be itnpaired, 

although a server crash could prevent the file-level task 

from completing (see [gampson-Sturgis] for a more robust 

approach to the system crash problem). The server could 

acknowledge the operation either on receipt of  the request 

or on final termination; both approaches are 

problematical, since they violate the atomic property in 

one way or another. An alternative would be for the 

client to retain the burden of  sequencing these activities, 

but to 'speed them up using one of  the bulk-transfer 

methods proposed above. 

While none of  the methods discussed in this section 

have been tried, we are confident that their application 

would result in a shared page-level file system with very 

impressive overall performance. 

16 



6. WFS Applications 

In addition to the Woodstock system, now defunct, 

whose requirements drove the development of WFS, a 

number of  applications have been built that continue to 

use WFS for their files. Two of them are described in 

separate articles (see [Paxton] and [Shoch-Weyer].) 

A final example of  an application with a set of  higher- 

level characteristics different fi'om Woodstock is an 

implementation of  an experimental telephone directory 

data base. This application uses entirely different naming 

structures and access methods than Woodstock does, but 

can coexist with other WFS-based applications. 

The telephone directory application runs on personal 

computers in the Xerox internetwork, providing access to 

approximately 40,000 entries. Each entry associates a 

name with a telephone number and other public 

inlbrmation. All the entries are stored within a single WFS 

file with a fixed, known Fll). The user supplies a key, and 

the application responds with one or more entries whose 

names match the key (the key is an initial substring). A 

typical single-entry query can be completed in 

approximately one-half second, reading an average of  

three WFS data pages. 

For this simple application, a data base method using 

B-Trees [McCreight] was an obvious candidate. An 

available B-Tree package (which runs in the client 

machine) and WFS made an ideal combination: the former 

implements a particular high-level data structure, given 

operations that can read and write numbered data pages 

of any fixed size; the latter implements just these 

operations without in any way interpreting the contents of  

the pages. 

7. Conclusion 

We have demonstrated empirically that a very simple 

central file server, teamed with appropriate file system 

elaborations in the client host, can meet or exceed many 

of the capabilities of  more comprehensive central facilities 

at acceptable cost to the client. Clients benefit from the 

flexibility and file system robustness resulting from this 

approach. Extensions to meet more stringent performance 

requirements and to provide adequate security seem 

possible without major modification to the design. 

Although this approach has been quite successful, it 

remains to be seen which of  the possible partitionings of  

server-client functions will prove to be the most powerful 

and convenient. 

References 

[Birrell-Needham] 
A. Birrell and R. Needham, A Universal File Server; to appear 
in Communications of the ACM. 

[Boggs et al] 
D. Boggs, J. Shoch, E. Taft, and R. Metcalfe, Pup: An 
lntcrnetwork Architecture, to appear in IEEE Transactions on 
Communication. 

[Clark] 
D. Clark, An Input/Output Architecture for Virtual Memory 
Computer 5'ystems, MIT MAC TR-117, January 1974. 

[Israel et al] 
J. Israel, J. Mitchell, and H. Sturgis, Separating Data fi'om 
Function in a Distributed File System, t'roc. Second 
International Symposium on Operating Systems, [RIA, 
Rocquencourt, France, October 1978; to appear in D. Lanciaux, 
cd., Operating 5),stems, North Holland. 

[Kent] 
S. Kent, Encryption-based Protection for Interactive User- 
Computer Communication, MIT MAC TR-[62, May 1976. 

[Lampson-Sturgis] 
B. Lampson and H. Sturgis, Crash Recovery in a Distributed 
Data Storage System, to appear in Communications of the ACM. 

[McCreight] 
E. McCreight, Pagination of B*-Trees with Variable-Length 
Records, Communications of the ACM, 20(9):670-674, 
September 1977. 

[McDaniel] 
G. McDaniel, METRIC: A Kernel Instrumentation System for 
Distributed Environments, Operating Systems Review 11(5):93- 
99, November 1977. 

[Metcal fe-Boggs] 
R. Metcalfe and D. Boggs, ETHERNET: Distributed Packet 
Switching for Local Computer Networks, Communications of the 
ACM, 19(7):395-404, July 1976. 

[Needham] 
R. Needham, Adding Capability Access to Conventional File 
Servers, Operating Systems Review, 13(1):3-4, January 1979. 

[Needham-Birrell] 
R. Needham and A. Birrell, The CAP Filing System, Operating 
Systems Review 11(5):11-16, November 1977. 

[Needham-Schroeder] 
R. Needham and M. Schroeder, Using Encryption for 
Authentication in Large Networks of Computers, 
Communications of the ACM, 21(12):993-999, December 1978. 

[Paxton] 
W. Paxton, Client-Based Transactions to Maintain Data 
Integrity, Proceedings of the Seventh Symposium on Operating 
System Principles, 1979. 

[Richards] 
M. Richards, BCPL: A Tool for Compiler Writing and System 
Programming, AbTPS Conference Proceedings (SJCC) 35:557- 
566, 1969. 

[Rivest et al] 
R. Rivest, A. Shamir, and I.. Adelman, A Method for Obtaining 
Digital Signatures and Public-key Cryptosystems, 
Communications of the ACM, 21(2):120-126, February 1978. 

[Shoch-Weyer] 
J. Shoch and S. Weyer, Page Level Access to a Network File 
Server from Smalltalk, to appear. 

[['hacker et all 
C. 31rocker, E. McCreight, B. Lampson, R. Sproull, and D. 
Boggs, Alto: A Personal Computer, Computer Structures: 
Readings and Examples (Siewiorek, Bell, and Newell, eds.), 
1979, to appear. 

17 


