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A B S T R A C T

The Network File System (NFS) utilizes a stateless protocol between
clients and servers; the major advantage of this statelessness is that NFS
crash recovery is very easy. An NFS client simply continues to send a
request until it gets a response from the server. However, this client retry
model also has disadvantages: a server can receive multiple copies of the
same request. The processing of duplicate requests is an expense of server
effort that is better spent elsewhere. Worse than that, it can result in
incorrect results. This paper describes a work avoidance technique that
utilizes a cache on the server to avoid the needless processing of duplicate
client requests. An implementation of this technique has resulted in a
significant increase in server bandwidth. A beneficial side effect is that it
can help avoid the destructive re-application of non-idempotent opera
tions. It can be used in any NFS server implementation, requires no client
modifications, and in no way violates the NFS crash recovery design.

1 . I n t r o d u c t i o n

The Network File System (NFS)^ has become a standard in the UNIX^ industry. The
NFS utilizes a stateless protocol between clients and servers. This means that an NFS
server is not required to keep any information (state) about a client request after it has
been performed. Each NFS request contains all the information necessary for the server
to perform an NFS operation [1].
The major advantage of this statelessness is that NFS crash recovery is very easy. Nei
ther client nor server must detect the other's crashes. Since a server has no state infor
mation to maintain, there is nothing for it to throw away after a client crashes. Like
wise, there is no state information to re-build when the server returns after a crash. An
NFS client simply continues to send (retransmit) a request until it gets a response from
the server. (Optionally, the client can give up after a number of retries specified at
mount time.) This client retry model solves other service problems such as network disr
uptions, data loss at the server's network interface, and overflow of the server's input
q u e u e .

^ NFS is a trademark of Sun Microsystems, Inc.
^ UNIX is a registered trademark of AT&T.
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However, the NFS client retry model also has disadvantages. To an NFS client, a server
that is down simply looks like one that is slow to respond. Problems arise because a
server that is slow to respond simply looks like one that is down.
Due to retransmitted requests, a slow or busy server can receive multiple copies of the
same request. In fact, even the quickest of servers can receive duplicate requests from an
impatient client. The processing of these duplicate requests is a waste of server effort
that is better spent servicing other requests, perhaps from other clients. Worse than this
inefficiency, duplicate request processing can result in incorrect results (affectionately
called 'filesystem corruption' by those not in a filesystem development group). The lost
writes seen at MIT by Project Athena [2] are the result of an NFS server processing
duplicate client requests for a file truncation operation.
Included in the Ultrix^ V2.2 diskless workstation project was the goal of improving the
performance of our NFS implementation. Since all of the diskless workstation's files
would be accessed via NFS, its filesystem performance would be equivalent to its NFS
performance. To a large extent, a client's NFS performance is determined by its server's
performance.
The write operation is the most costly of ail NFS server operations (see NFS Writes,
below). A single client can have multiple outstanding write requests, and a diskless client
generates more NFS write requests, on average, than a diskful one. This follows from
using NFS for paging, swapping, and /tmp.
An investigation of diskless client performance [3] has shown that a heavy write load
results in poorer client performance than loads of other types. Detailed server analysis
indicated that when under heavy write load, servers expended considerable effort servic
ing duplicate requests.
A vwrk avoidance technique is described that utilizes a cache on the server to avoid the
needless processing of duplicate client requests. An implementation of this technique has
resulted in a significant increase in server bandwidth, especially with low end server
configurations. A beneficial side effect is that the destructive re-application of a duplicate
operation is much less likely.
There is no need to re-build the previous contents of the cache after a server crash.
Therefore, the use of this cache violates neither the statelessness of the NFS protocol nor
its crash recovery design. No NFS client side modifications are necessary, although one
change is suggested that makes the technique more effective (see Results and Recommen
dations).

2 . B a c k g r o u n d
This section contains some necessary background information on various NFS topics.
References to "typical" NFS clients and servers refer to implementations of NFS derived
from the 4.3BSD based kernel implementation available from Sun Microsystems, Inc.
Similarly, the term reference port will refer to this implementation. Our work was done
with version 3.2 of the reference port. The following characterizations may apply to
other NFS implementations as well.

2 . 1 . N F S C l i e n t s a n d S e r v e r s

NFS client systems range in size from small workstations to large multi-processor
timesharing machines with hundreds of users.
A typical NFS client system will retransmit a request if it has not received a response
from the server for that request within an interval of time that defaults to .7 seconds.
This interval is implementation dependent and can also be specified as a parameter when

® Ultrix is a trademark of Digital Equipment Corporation
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the filesystem is mounted. The client will retransmit again (and again, ...) if no response
is received. The time interval is increased using a backoff algorithm (next interval =
current interval X 4) up to a ceiling value (60 seconds) after each successive timeout.
This level of impatience that a client has for a server is determined solely by the client
and is not dynamically adjusted based on past server performance.
The number of retries within a timeout cycle is implementation dependent and is also a
mount time parameter. The reference port sets the default number of retries in a
timeout cycle to three. With a soft mount (a mount option), if a response is not received
for a request within the first timeout cycle, then the client operation (system call) fails.
With a hard mount, the request is retransmitted until a response is received. With a
hard mount, a single NFS request may span more than one timeout cycle before it
receives a reply. The backoff algorithm described above continues to increase the timeout
interval across timeout cycles.
The client RFC ( Remote Procedure Call [4]) layer assigns a transaction ID [xid) to each
outgoing request. Duplicate requests within the same timeout cycle will have the same
xid. Duplicate requests will have different xids when the number of re-transmissions
exceeds the number of re-tries in a timeout cycle. Version 2 of the NFS protocol does not
define an NFS transaction ID that is unique to each NFS request from a given client.
This makes it impossible for a server to reliably determine whether two requests are actu
ally duplicates. [It is not enough to know that two requests appear to be the same (e.g. a
write to the same location in the same file), since they could have been generated by two
separate client processes in sequence.)
The client system can have multiple outstanding read and/or write requests. A client
process blocks whenever a read or write request cannot be satisfied locally and must be
processed by the server. When it blocks, another process can run; that process may also
generate a read or write request. A single process can have multiple outstanding read
and/or write requests if the client system is running NFS block I/O {biod(8)) daemons.
These daemons perform client read-ahead and write-behind functions asynchronously,
allowing the client process to continue execution. Each outstanding request will time out
individually; each can result in a retransmission. Clients discard duplicate responses (the
second response received for a single request) as unsolicited input, but they are counted
as a badxid, and available via nfastatfS).
NFS server systems range in size from small machines with a single, slow disk to large
multi-processor machines with disk farms.
A typical NFS server system simply waits for work to appear on an incoming request
queue. This queue is the socket buffer allocated for the NFS socket. Incoming requests
are converted into a form understandable by the local filesystem routines that actually
perform the work of getting data to/from a disk. The incoming request queue is of fixed
size. If the queue fills (requests coming in faster than they can be processed) then some
incoming requests may be lost.
The amount of work that a server can perform is called server bandwidth. It is usually
not limited by CPU speed, but by network interface and/or the disk subsystem perfor
mance. Server bandwidth is sometimes measured in a general manner, e.g. NFS
operations/second, and sometimes specifically, e.g. read or write speed in Kbytes/second.
A typical server does not prioritize incoming requests based on type of request or ori
ginating client.
Ignoring access rights and security, an NFS server has limited control over how it is used.
A n a d m i n i s t r a t o r d e c i d e s :

• Whether to serve or not. A system serves by running nfsd(8) daemons.
• What to serve. A server only allows operations on exported filesystems.
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• How many nfsd daemons to run. This controls the number of NFS requests that
the server can work on concurrently. It also controls the amount of local resources
(e.g. disk bandwidth) that is available for remote use (versus use by local
processes).

The server depends upon its clients to attenuate their request loads as it becomes heavily
loaded (i.e. the aggregate load is coming in faster than it can be processed). However,
nothing makes a particular client implementation act kindly towards a server. There is
no way to enforce the client backoff scheme described above. Most implementations
allow a client administrator (or workstation user) to run as many block I/O daemons as
they wish, and to mount with retransmission timeout values that are very small. When
faced with one of the latest generation workstations armed with a suitable workload, the
performance of even the most powerful server configurations can degrade drastically.

2 . 2 . N F S W r i t e s

Since an NFS server is bound by a stateless protocol, it must commit any modified data
to stable storage before responding to the client that the request is complete [1]. If a
server is not following this rule, then it is not living up to its part of the agreement
implicit in the NFS crash recovery design. An asynchronous operation carries with it the
promise to fully complete that operation at some later time. Without a way to recall
past unkept promises, a server cannot make them. The protocol contains no provisions
for recalling past promises (which is precisely why crash recovery is so easy). Therefore,
a server must complete each data modifying operation fully (synchronously) before
responding .
For each remote write request, at least one, and possibly two or three synchronous disk
operations must be performed by the server before a response can be sent to the client
indicating that the request has been completed. At the very least, the data block in ques
tion must be written. If the write increased the size of the file, or on-disk structures have
changed (e.g. adding a direct block to fill a "hole" in the file), then the block containing
the inode must be written. Finally, if an indirect block was modified, then it too must be
written before responding.
The reference port makes a special case for the file modify time in the inode. If modify
time is the only item changed in the inode as a result of a write operation, i.e. a write to
a previously allocated block, then the inode update to disk is performed asynchronously.
This is one promise that the server may not keep; the risk is taken for the benefits of
better performance.

2.3. Duplicate Requests
Duplicate requests (sometimes called delayed retransmissions) are part of the NFS crash
recovery design. A server can receive a duplicate request while performing the original
request. Multiple copies of a request can be received and placed on the input queue
before any are processed. If a client is preparing to retransmit when the response it
wanted is received, the server will still be sent a duplicate request.

2 .4 . Non- Idempotent Operat ions
When used in a database context, the term idempotent is used to describe transactions
that can be applied more than once without any ill effects. Inquiry transactions are idem-
potent. Debit and credit transactions are non-idempotent.
When used in an NFS context, the term can be used to distinguish between request
types. An idempotent request (e.g. read) is one that a server can perform more than once
without side effect. The side effects caused by performing a duplicate request can be
c lass ified as des t ruc t i ve and non-des t ruc t i ve .
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To simplify the following discussion, we will only consider the case where the file in ques
tion is being accessed by a single remote client and not being shared between multiple
remote clients and/or processes local to the server. Of the sixteen request types in ver
sion 2 of the NFS protocol (the only version in production use today), nine are non-
idempotent. These are:

Ta b l e 1 . N o n - i d e m p o t e n t N F S O p e r a t i o n s
O o e r a t i o n N a m e D e s c r i n t i o n

c r e a t e c r e a t e a fi l e
r e m o v e r e m o v e a fi l e

l i n k c r e a t e a l i n k t o a fi l e

syml ink create a symbolic link
m k d i r make a directory
r m d i r remove a directory
r e n a m e r e n a m e a fi l e
s e t a t t r s e t fi l e a t t r i b u t e s
w r i t e w r i t e t o a fi l e

The first seven operations in Table 1 are obviously non-idempotent. They cannot be re
processed without special attention simply because they may fail if tried a second time.
The create request, for example, can be used to create a file for which the owner does not
have write permission. A duplicate of this request cannot succeed if the original suc
ceeded. Similarly, you can only successfully remove a file once; if permission was granted
the first time, a second try cannot succeed. This type of scenario is not destructive, but
is a nuisance for the server implementation to sort out.
Another scenario, one that does have destructive side effects, involves retransmitted non-
idempotent requests and a race condition between nfsd daemons on the server. In Exam
ple 1, the client runs a process that creates a file and writes one block into it. The server
is running two nfsd daemons. Client and server activities are shown at a number of
points on a time line; the points are not equally spaced.

E x a m p l e 1 . D e s t r u c t i v e N o n - I d e m p o t e n t S c e n a r i o
T i m e C l i e n t A c t i v i t v S e r v e r A c t i v i t v

t o p r o c e s s s t a r t s i d l e

t l transmit create request cfO) i d l e
t 2 wa i t fo r c rea te response receive cfO), schedule nfsdl
t 3 retransmit create request c(l) nfsdl: complete c(0), truncate file,

send create response
t 4 receive create response

p r o c e s s r e s u m e s

receive c(l), schedule nfsdl

t 5 transmit write request, w(0) nfsdl: starts but blocks on a
s v s t e m r e s o u r c e

t 6 wa i t f o r wr i te response receives wfO), schedules nfsdS
t 7 wait for write response nfsdS: complete w(0)

send wr i te response
t 8 receive write response

process comple tes
nfsdl: complete c(0), truncate file,

send create response
t 9 receive create response and

d i s c a r d i t
i d l e

In Example 1, the server processes two create requests and one write request. The net
effect is a zero length file; the write has been lost. This problem has been seen at MIT [2].
There is a variant of the scenario in Example 1 that involves no nfsd block on a system
resource (t5). If both nfsdl and nfsdS are scheduled, one with the write and the other
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with the duplicate create, then scheduler vagaries can make their order of execution
unpredictable.
The setattr and write operations are not as obvious as the first seven listed in Table 1.
They are destructive only if re-applied after some other intervening operation. Setattr
can be used to truncate a file; it can be used instead of create in a scenario similar to
Example 1. Write would appear to be idempolent, but there is a curious destructive case
here as well. If a duplicate write request is applied in a server nfsd race after a file trun
cation, then the file size is non-zero and the file contents are binary zeroes -I- the block of
w r i t e d a t a .

2 . 5 . R e f e r e n c e S e r v e r T r a n s a c t i o n C a c h e

The 4.3BSD based kernel implementation of NFS that is available from Sun Microsys
tems, Inc. features a cache of recently processed transaction IDs {xids) on the server.
This cache is implemented in the kernel RFC layer, not in the NFS layer.
The server NFS layer uses this cache to store the xids of recent requests that have suc
ceeded. The scope of the cache is five types of transactions: create, remove, link, mkdir,
and rmdir. The cache is accessed by hashing the xid into an array of lists. The cache
entries are re-used in a round-robin fashion. If an operation fails, the cache is used to
help determine if the failure was due to the request being a duplicate of one that previ
ously succeeded. If it is, then a positive response is returned to the client. Used in this
manner, the cache helps to sort out the non-destructive type of behavior described above,
b u t n o t t h e d e s t r u c t i v e b e h a v i o r .

Destructive behavior is not prevented for two reasons:
• The cache is not used or consulted for the setattr or write operations.
• For the operations where the cache is used, it is searched only after an operation

has already been performed, and only then if it has failed.

3 . W a s t e d S e r v e r E f f o r t

As mentioned earlier, we chose to look at servers under write load for areas where server
performance could be improved. An NFS server implementation (for UNIX) is an order
of magnitude simpler than the NFS client implementation. That made it a simpler place
to look for a quick improvement. Also, a server can be used by many different client
implementations; improving our client implementation didn't necessarily improve condi
t i o n s f o r o u r s e r v e r s .

NFS servers were placed under load and their activities were logged. The logging was
done by modifying the server kernel to write information of interest to the existing Ultrix
error log facility. An existing kernel interface for writing to this error log was used. The
nfsstatfS) program was used on the client to measure the total number of write requests
and the number of duplicate responses [badxids).
An examination of the server log showed that when the server's response slowed, the
client would "ask again", as designed. This duplicate request, or retransmission, was
added to the already heavy load on the server. Performing the operation a second time
helped guarantee that it would be slow in responding to some other request, which might
then result in a duplicate of that one, and so on.
Our reference port based NFS server implementation didn't distinguish the second
request for work that had already been done from the first request and performed the
request a second (or third!) time.
When the workload is "expensive" to perform (writes are the most expensive [3]), it is
relatively easy to create this wasteful server scenario. One p-VAX-lU client system run
ning 4 biods can have up to 5 concurrent write requests from a single user process. A

^ VAX and ^.VAX are trademarks of Digital Equipment Corporation.
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simple test program was used that wrote 1 Mbyte to a file via 128 8 Kbyte write
requests. The file was always 1 Mbyte in size when the program started; the program
emptied the file when it was opened and proceeded to extend it to the 1 Mbyte final size.
A write that extends a file is the most costly of write requests (see NFS Writes above).
In the tables that follow,

• 'small server' is a dedicated p,VAX-II with an RD53 (70 Mbyte Micropolis 1325D
Winchester) running 4 nfsds.

• 'large server' is a dedicated VAX 8550 with RA81 450 Mbyte disk running 4 nfsds.
• 'write requests' is the number of 8 Kbyte writes generated by the client.
• 'duplicate writes' is the number of retransmitted client write requests.
• 'excess writes transmitted' is a measure of the excess data sent from the client to

t h e s e r v e r .

• 'duplicate writes processed' is the number of duplicate writes performed by the
s e r v e r .

• 'excess writes processed' is a measure of wasted server bandwidth.
• 'write speed' is a client measure (in Kbytes/second) of throughput; it is 1 Mbyte

divided by the time needed to open, truncate, write, and close the file.
When the test program is run, a minimum of 128 write requests must be made; if more
are generated, then they are duplicates. Likewise, 128 write requests must be processed
by the server; processing more is a waste of server bandwidth. The initial timeout inter
val used was .7 seconds. Twenty iterations of this test program were run and statistics
gathered. Table 2 contains the averaged results.

Ta b l e 2 . W r i t e L o a d Te s t R e s u l t s
s m a l l large
s e r v e r s e r v e r

write requests 1 9 0 1 4 1

duplicate writes 6 2 1 3
excess w r i t es t r ansm i t t ed 4 8 % 10%
duplicate writes processed 6 1 1 3
excess writes processed 4 8 % 10%
w r i t e s n e e d f K b v t e s / s e c . l 3 5 7 5

These results showed that significant server bandwidth was spent performing duplicate
writes. This relatively simple test immediately indicated an area upon which to focus. If
the server could be made to spend less bandwidth on "useless" work when under write
load, then it would have more bandwidth for "useful" work.

4 . S e r v e r M o d i fi c a t i o n s

The reference port RFC transaction cache described above was used as a starting point.
The scope of the cache was increased from: create, remove, link, mkdir, and rmdir to
include all request types. More information was added to each cache entry: an in-
progress flag, a transaction completion code, and a time stamp. The size of the cache
was kept at the reference port size of 400 entries. The entries are re-used in the same
round-robin manner as in the reference port. That is, entries age equally and can be refer
enced right up to the time of re-use.
The major change is in how the NFS layer uses the cache. The reference port performs
an operation and checks the cache afterwards only if it fails and it is one of the types
within the scope of the cache. This approach was changed in the following ways.
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4.1. Requests In-Progress
A check of the cache on every incoming request was added as one of the very first NFS
layer operations. If the transaction is in the cache, and marked in-progress, then the
request is counted and quickly discarded without any response. If the transaction is not
in the cache, it is added and marked in-progress.
The overhead associated with a fast cache check pales in comparison to the overhead
associated with performing even the fastest request and transmitting a (useless) response.
When under load, the check is saving much more than it costs. When not under load,
the cost is negligible. As for throwing the request away: it is, after all, a duplicate and
already getting attention; a response will be forthcoming.

4.2. Requests Recently Completed
If a duplicate request is received within a certain time interval (called throwaway window)
and the original request was processed and successfully completed, then the request is
counted as a duplicate and quickly discarded without a response. A duplicate of a
request that earlier failed is re-tried. Experiments with various intervals showed that a
throwaway window of from 3 to 6 seconds was sufficient to drop the processing of dupli
cate requests to nearly zero.

If a client asks a server to repeat an operation, then either the response was lost, or more
likely, the duplicate request passed the response in transit, i.e. the client has actually got
ten the original response by the time the server starts to process the duplicate. In the
former case, the client will simply keep asking; after the throwaway interval has expired,
the server will perform the request. The latter case is exactly what we are looking for;
we truly want to throw this request away. It isn't clear whether it is better to retry
requests that have previously failed or not. Failures don't happen often and are usually
processed quickly. By re-processing, the old server behavior was kept for failure cases.
Therefore, nothing was broken that was not previously broken. [There is a potential, but
unlikely, problem here: the client may get a failure response from the original request and
the server replays a duplicate which for some reason now succeeds. The client thinks the
operation failed, when in fact it has succeeded. This can cause client/server cache con
sistency problems.)

4.3 . Non- Idempotent Operat ions
Special treatment is given to the non-idempotent operations (including setattr and write).
History on these operations is kept, namely completion status and a time stamp when the
operation completed. When one of these operations is completed, its cache entry is
updated with completion status and the appropriate inode time (either "modified" or
"changed"). When a duplicate is received for a request that earlier succeeded, and the
inode indicates that the file has not changed since that time by comparing its time with
the time in the cache entry, then a successful response is returned to the client. This will
occur until the cache entry is re-used and the cached information is lost. After that time,
a duplicate request will be processed as a new one.

The goal was to avoid re-processing these duplicates as long as possible. Writes are very
expensive and the non-idempoieni operations can be dangerous. If the earlier request has
succeeded and the file has not since changed, then it seems clear that to return a response
is correct. What to do for earlier failures is less clear, but (like above) by re-processing
them, old server behavior was maintained.
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5. Results and Experiences
When the write tests described earlier were run using a modified server, the number of
duplicate writes performed by the server dropped to zero (the server was using a throwa-
way window of six seconds). Since the server was doing less wasteful work, it responded
faster to the necessary work and the write throughput as seen by the client increased.
Since the amount of bandwidth wasted was greatest on the small server, that is where
the improvement was greatest. Table 3 compares the earlier results (from Table 2) with
the averaged results obtained using a modified server.

Table S. A Comparison of Write Load Test Results
m o d i fi e d m o d i fi e d

s m a l l s m a l l change large large change
s e r v e r s e r v e r s e r v e r s e r v e r

write requests 1 9 0 1 9 0 1 4 1 1 4 1

duplicate writes 6 2 6 2 1 3 1 3
e x c e s s w r i t e s t r a n s m i t t e d 48% 48% 10% 10%
duplicate writes processed 6 1 0 -100% 1 3 0 -100%
excess writes processed 48% 0 % -100% 10% 0 % -100%
w r i t e s n e e d f K b v t e s / s e c . l 3 5 4 8 + 3 7 % 7 5 8 3 + 1 1 %

The real gains are not necessarily seen from a single client, but a group of clients that
take advantage of the server bandwidth increase and better response to load conditions.
A very beneficial side effect is that there have been no reports of the destructive behavior
caused by the re-processing of non-idempotent operations. These operations, as a whole,
are expensive to perform, but their frequency (except for write) is relatively low. The
major reason for handling them specially is their destructive potential.
The server modifications described here were integrated into Ultrix V2.2, which has been
in production use since early 1988.
In Ultrix V3.0 the client RFC layer was modified so that the caller (NFS) could define the
transaction ID {xid). In this way, the NFS layer can control the xid and make sure that it
is unique for each request, even across timeout cycles. This in turn helps make the server
transaction cache even more effective. More work needs to be done comparing the
effectiveness of different cache sizes over varying workloads.

0 . C o n c l u s i o n s

NFS servers were placed under heavy write load and the results (Table 2) showed that
the system was unstable in response to this load. A heavy write request load resulted in
retransmitted write requests that resulted in a heavier load. The server modifications
using the work avoidance technique described earlier reduced the positive feedback effects
of duplicate client requests. These results are displayed in Table 3. The modified server
responds to heavy load by simply trying to throw some requests away. This notion
didn't set well at first. But the problem under observation was a slow server looking like
a downed one to an impatient client; it seemed ironic (and amusing) that it might help if
the slow server started selectively acting like a downed one and discarding requests.
Throwing a duplicate request away opens up server bandwidth for other work; not
responding reduces the amount of network traffic. The NFS client retry model will take
care of server responses that are lost on the network or by the client. NFS is usually
used on LANs, where network losses are infrequent. Therefore, delays due to this scheme
s h o u l d b e r a r e .

An implementation of this technique resulted in a significant increase in server
bandwidth, especially with low end server configurations. A very beneficial side effect is
that the destructive re-application of duplicate non-idempotent operations is made much
less likely. There is no need to re-build the previous contents of the cache after a server
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crash. Therefore, the use of this cache violates neither the statelessness of the NFS pro
tocol nor its crash recovery design.
The load tests showed that the server's input queue worked very well (at least with this
selective type of load). When under heavy write load, very few requests were lost (seen
by comparing the number of duplicate requests generated by the client with those pro
cessed by the server). The limiting factor was not an input queue that was too small.
An analogy can be drawn here between NFS server congestion and network congestion.
John Nagle (5| has shown that long (even infinite) queues won't help a network gateway
with an overload; the load must be shed in some way. The modified server screens its
load and sheds requests that it is currently processing or has recently completed.
The mechanisms leading to congestion in datagram packet-switching networks are similar
to those that lead to congestion in stateless (non flow-controlled) RFC based file servers.
Van Jacobson [6] has shown that an effective answer to network congestion is for the
client to detect it and back off on its request rate. Raj Jain [7] stresses the need to
operate a system below the point of unstable positive feedback. An area that begs for
future NFS work is the client side of the feedback loop. The NFS reference port client
implementation does back off when retransmitting a given request more than once, but it
does not use past server response characteristics to determine future initial timeout inter
v a l s .

7 . R e c o m m e n d a t i o n s

This technique is recommended for use by all NFS server implementations. An NFS
server selects neither the implementation of its client, nor its timeout characteristics.
Even if NFS client timeout behavior is modified in some future implementations, current
ones (using version 2 of the NFS protocol) will be used for years to come; performance
gains are obtainable with them by using this technique. Likewise, the correctness
improvements seen by this technique are useful for current client implementations. Ver
sion 3 of the protocol won't be defined until at least 1989; it may fix some of the non-
idempotent operation problems, but won't be widely used until years after that.
NFS servers that use this technique can offer better performance and correctness to their
clients. It is recommended that client implementations change their RFC layer to assign
unique transaction IDs {xids) to NFS requests. This improves the effectiveness of the
technique. It is further recommended that Version 3 of the NFS protocol include a tran
saction ID in each request.
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