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ABSTRACT 

This paper describes the development of an extended file system for MASSCOMP’s 

Real Time Unix (RTU) operating system. It discusses a mechanism by which 

users can perform file operations upon data physically residing in backing store 

on a remote computer. All operations are transparent to processes running on 

the local host. Migration of processes to the remote computer was not con- 

sidered as a goal and no attempt was made at solving that problem. This system 

is client/server based and operates between two or more MASSCOMP computers on 

the same Ethernet. These machines run an enhanced version of the RTU kernel 

with an enhanced version of the network software. A new reliable datagram pro- 

tocol (RDP) that supports multiple connections through a single endpoint has 

been developed to simplify the kernel’s interface to the communication mechan- 

ism and to improve the throughput of remote file operations. All remote file 

operations are based on transactions. A global protection domain is used to sim- 

plify the concept of file ownership; that is, a single set of user-ids and group-ids 

is used on all machines. 

1. Introduction 

Given a network of computers running Real-Time UNIX (RTU), the MASSCOMP variant of the 

UNIXRit74a Time Sharing System, how can users of each machine on the network easily share 

databases? These databases might be anything from the system sources for a large programming 

project, to the telephone directory for an entire company. The key points are that the database is 

to be shared by many different programs and users throughout the network, and potentially 

could be updated by many different programs at different times. The programs used to update 

the shared database should be no different than those used to update a non-shared database. The 

goal of the MASSCOMP EFS project was to produce a new version of the operating system that 

would allow network-wide file operations without requiring modifications to existing user pro- 

grams. Thus a user could easily and transparently share data between multiple machines. 

+ MASSCOMP and RTU are Trademarks of Massachusetts Computer Corporation. 

UNIX is a Trademark of AT&T Bell Laboratories. 
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1.1 What is EFS? 

EFS is the Extended File System facility for RTU that allows users to access data residing on 

remote backing store. The remote backing store is connected to a normal MASSCOMP machine 

operating with the EFS environment. Except for a small network time delay, any valid access to 

the data retained on the remote backing store is indistinguishable from an access to data retained 

within the backing store on the local host. This is referred to as network transparency. Note, 

however, that a new set of error codes was introduced to cope with the new types of errors that 

arise with the EFS environment. 

1.2 Constraints 

The UNIX system call interface standard proposed and accepted by the /usr/groupBuc84a 

and the draft standard of the IEEE P1003 POSE working groupIEEd)a have left a seemingly indelible 

mark on UNIX systems manufactured by different vendors. The standard interface dictates calling 

conventions and semantics for all major system calls, including file I/O operations. Therefore 

any attempt to produce an extended file system (EFS) for UNIX must lie within the boundaries set 

by this interface. Furthermore, the authors consider it non-optimal to force users to recompile or 

relink a working program when the operating system for the same computer hardware is changed 

from being a simple version of UNIX, to one that supports an EFS. The MASSCOMP EFS works 

within the constraints described above. All file operations (open(2), close(2), read(2), write(2), 

ioctl(2), etc.) continue to work as they did previously. Thus any program that works under a 

pre-EFS version of RTU continues to function correctly with an EFS version of RTU. 

1.3. Why build an EFS? 

In a timeshared system where all users perform their work on the same machine, data can 

easily be shared among users because it is all stored locally. Indeed, sharing is the norm. Most 

large systems go to great expense to allow users to share everything from files to in-core program 

images. In many cases, users may not even know they are working with objects shared by other 

users. 

In the case of smaller workstations, however, data is stored on each of many machines. 

Since sharing is difficult, its occurrences become rare. In fact, data becomes replicated much 

more often than it is shared. Disks are copied either physically or via a network, but new ver- 

sions of data from those disks are rarely sent to all sites that contain copies of it. 

Consider the difficultly of keeping several workstations running the same version of system 

software, or worse yet, keeping many copies of some database up to date. An EFS allows work- 

stations connected by a local area network to share data as though it were stored locally as it is in 

a large timeshared enironment. 

For a more concrete example, consider an application such as the design of VLSI circuitry 

for a central processing unit. Graphical editors, such as KIC-2Bil83a or HAWKKel84a are used by 

Ic designers to layout the circuit geometrically. The circuits are then simulated with tools such as 

SPICECoh76a, Qua83a and are finally converted to an IC mask. Along the development path, dif- 

ferent engineers work on different pieces of the problem with different tools. Each engineer 

works on his or her piece of the circuit, yet each may periodically need access to other parts, or 

to the entire circuit as a whole. In order to help the entire design team work together, the master 

image of the circuit and the ‘‘cell libraries’? are usually stored on one central machine. Each 

designer need only concern himself with the files associated with his portion of the project. 
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Workstation: A 

Ethernet 

Workstation: B 

Figure: 1. Two design stations and a shared file server. 

In figure 1, we see two different design stations sharing a common file server.! By letting each 

workstation remotely graft some part of the server’s file system as part of its own directory 

hierarchy, any process running on a workstation, (such as the graphics editor) can access data on 

the remote file server as though the data were stored locally. The designer can then share com- 

mon pieces, such as the cell libraries, without having to copy and store them locally. When the 

designer needs to use a cell, the editor many simply ‘‘read it in’’ from its master location on the 

file server. 

Figure 2 shows two file systems ‘‘virtually linked’’ together so that each process on work 

station A views the remote directory hierarchy as part of its own. Cell libraries are contained on 

the remote file system, and the local system has a local copy of some part of the total circuit 

being designed. 

1. Note, that you do not have to specify a ‘‘file server’? as such. Any machine on the network that is participating 

in EFS can act as either a client or a server. 
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Figure: 2. Machine A is sharing part of Machine B’s File System. 

2. Previous Work 

2.1 Version 8 File System 

The goals of the MASSCOMP EFS project are similar to goals of the Version 8 File System 

described in the Proceedings of the Summer 1984 USENIX conferenceWei84a and developed at 

Bell Laboratories. The Version 8 File System is proprietary to Bell Laboratories, and thus could 

not be used as a starting point for our efforts. The Version 8 File System, like EFS, is built 

around the ‘‘inode’’ concept. 

2.2 Remote Virtual Disk 

EFS differs from other network file system implementations in that the kernel has been 

modified to route the standard UNIX system calls to another host when necessary. It differs from 

the remote virtual disk (RVD) approach, as developed by Mike Greenwald and Larry AllenGre83a 

for the MIT Laboratory for Computer Science’s multiple VAX/750 UNIX systems running as CPU 

servers. The MIT approach is similar to the LucasFilmDuf82a method. The major advantage of 

RVD is that under it, as under EFS, no user code must be modified. Unlike EFS however, RVD does 

not allow a given object-file or file system to be shared simultaneously by several machines. 

Rather it allows a single physical disk to be divided up into smaller chunks and parceled out to 

remote machines. 
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2.3 The Newcastle Connection 

The work done by the University of Newcastle-upon-Tyne in EnglandBro82a was another 

approach that we chose not to follow. The Newcastle system is simple and has the advantage of 

being implemented with no kernel modifications; it is done instead as runtime library calls. The 

Newcastle system has the unfortunate side effect of starting up many child processes to do the 

network server work. Further, since the operating system does not ‘‘know’’ about the ‘‘remote- 

ness’’ of a file, concepts like change directory are difficult to emulate. 

2.4 NFS 

Sun Microsystems’ Network File System (NFS)Lyo85a is another implementation where the 

concept of remoteness is built into the kernel on a per-file basis. Whereas the main thrust behind 

NFS is portability to a variety of different machines and operating systems, EFS is aimed more at 

complete transparency and performance. This distinction in focus results in differences between 

the two designs. A prominent attribute of NFS is that it is designed to allow a server system to 

operate without having to retain intermediate state information between remote requests. This 

reduces implementation complexity for the server and simplifies error recovery. However, this 

comes at the expense of greater overhead per transaction and a consequent loss in performance, 

and a loss of transparency for certain types of remote operations. 

3. The Design Space 

The ‘‘design space’ for our development effort imposed the following constraints. 

1). All kernel code must be written to operate in a multiprocessor environment. 

2.) EFS development must not impede any other operating system development. 

3.) The design must operate using a ‘‘Client - Server’’ model. 

4.) All operations revolve around inodes. 

5.) Calls must be provided to enable and disable remote access. 

6.) No single client process should be able block an EFS server from serving other client 

processes. 

The next paragraphs describe these constraints and their impact on the design. 

3.1 Multiprocessor Safety 

Unlike other UNIX variants, notably AT&T’s System Vv and the University of California’s 4.2 

BSD, RTU runs on both dual-processor and full multi-processor (MP) computer architectures. This 

constraint means that any new code added to the RTU kernel must not hinder the multiprocessor 

nature of the system. 

3.2 Impact on other Development 

At the time of the EFS development, three large kernel projects were underway, each of 

which entailed rewriting major sections of the MASSCOMP RTU kernel. The group working on EFS 

has become adept at folding changes into other versions of the kernel from other development 

groups. Overall, we have been reasonably successful, but that story is the subject for a different 

forum. 
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3.3 Clients and Servers 

The operating model chosen is based on client-server style interactions. When a user pro- 

cess executes a system call locally, the file referenced by the call may be remote. In such cases, 

the local machine executes a ‘‘client’’ version of the operation that sends a message to the remote 

“‘server’? machine. The server decodes the request, fulfills it if possible, and then returns the 

result to the client. The client process is blocked until the server completes the transaction. 

3.4 Inodes and Rinodes 

Inside the UNIX kernel, the focal point for all file operations is the inode.” This is a per-file 

structure that contains all of the information that UNIX keeps about the file, including its size, 

type, owner, protection, access and modification times, and location on the disk. While a file is 

being operated on, UNIX keeps a copy of its inode in-core. In general, the address of this in-core 

inode is the key used by UNIX system calls to gain access to the file. 

In the EFS environment, an in-core inode address is insufficient to identify a remote file, 

since the regular inode can only describe files stored on the local system. We thus introduced the 

concept of a remote inode, or rinode, to describe remote files. An rinode is a special variant of 

an inode. Rather than containing the information that would be found in a normal inode, it con- 

tains a machine-id, which uniquely identifies a single host on the network, and the address of an 

in-core inode within the memory of that host. Where a remote file is involved, the rinode takes 

the place of the inode for system call operations. 

3.5 Start Up and Take Down 

To establish the mapping of a server’s directory to the clients, a new system call was intro- 

duced: rmount(2). This call is analogous to the standard UNIX call, mount(2). Similarly, a new 

call was introduced to take down the connection namely: rumount(2). Again, there is an anal- 

ogy with a standard UNIX call, wmount(2). 

3.6 Non-Blocking Server 

Later in this paper, we describe the problems that can occur when a server process blocks. 

Simply, any client process must not cause the server to block in such a way that other client 

processes can not make requests to the server, or processes local to the server can not run. 

4. The Implementation 

The client machine can be thought of as the local host on which a user program executes. 

The server is the machine that is accessed by the local host to perform certain file I/O operations. 

All remote file operations are transactions from the client to the server. When the server receives 

an I/O request it takes all the information in the transaction and then operates upon that transac- 

tion. In certains cases, such as write(2), not all of the information is available to the server when 

the I/O request is sent. In those cases, the server sends a transaction back to the host requesting 

the needed information. All transactions return sucess or failure, and the user program is noti- 

fied accordingly. 

2. For a more complete discussion of the UNIx I/O system, seeRit78a 

136 



4.1 The inode and namei 

In any operating system, there exists a method of mapping from a user’s concept of the file 

specification to a pointer into the actual file system tables. Under the UNIX operating system, the 

user visible file specification is called a pathname, and the pointer into the file system is an inode. 

In the UNIX kernel, the routine called namei is used to convert from a pathname to an inode. It 

returns either a pointer to an inode or an error code. System calls.that require a pathname as an 

argument such as open(2), stat(2), and link(2), internally call namei to perform a translation from 

the pathname to an inode. 

To obtain a transparent file system, EFS operates on a new type of object, an rinode, which 

is a pointer into the file system on a remote machine. Thus namei must be able to return both 

inodes and rinodes. We have modified namei so that it walks a pathname, it checks each inode 

that it encounters for remoteness. This is indicated by a new bit in the i__flag field: IREMOTE. 

To obtain this type of functionality, the path walk portion of namei includes new code, 

similar to: 

if (inodePtr-)i__flag & IREMOTE) { 

rinode = rnamei(ptrToRestOfPath); 

localInode = storeInInode(rinode); 

return(localInode); 

} else { 

... original namei() code ... 

} 

This new routine rnamei must look into the rinode and find the network handle for the remote 

system and put together all of the information for the remote procedure call. 

In the pre-EFS system, when a user process wants to send data, it performs a write(2) system 

call which is mapped into the Ethernet driver. In the EFS based kernel, the rnamei calls the driver 

directly on a known? socket and performs a ‘‘remote procedure call’’ to the server process acting 

as the client’s agent on the remote host. 

Please notice that the read/write pointer is maintained by the client system, and not by the 

server, which implies that the open file pointer must be passed to the server each time an I/O 

operation is performed. Further, this implementation is an inode implementation not a file 

implementation, and no modifications to the normal UNIX open file table were required. 

4.2 The Server Implementation 

For the file system type system calls discussed in the client portions (read(2), write(2), 

stat(2), link(2), and etc.), the server must call its local system routine to obtain the needed infor- 

mation for the client. As an example, when the client calls its local namei routine and discovers 

it must call rnamei, the server picks up the rnamei request and calls its own namei routine to 

obtain a remote specific inode. This information is then sent back to the client so that client’s 

rnamei routine can return the needed information to the client process that started this procedure 

in the first place. 

For instance, when an open(2) takes place, the client does a namei, and then sends back to 

the server a message saying in effect: ‘‘open this file.’’ The server has an incremented reference 

count for the inode. When the file is closed, the count is decremented.* Once referenced by the 

client, the file can be accessed by its rinode directly. 

3. When the EFs is first started up the local host determines how to communicate with the remote. After the system 

is started, the communication information is stored locally so it can be used later for namei/read/write requests. 

4. Incrementing the reference count does lead to error recovery problems which will be discussed later. 
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4.3 The Process Pool 

The server contains a pool of available kernel processes that can act as agents for any EFS 

client request. This set of processes is known as the ‘‘process pool.’’ This pool is a global 

resource and all EFS connections use the process pool to have their work performed. Further- 

more, any agent process from the pool can act in the behalf of any client. 

At EFS start up time, a master process on the server creates a socket at a well-known port® 

allowing client requests to be recieved. EFS This process is called the /ifeguard. In general, the 

lifeguard is dormant. Its job is to dispatch incoming requests to idle agent processes, and 

manage error recovery. 

Once a socket has been set up the system is ready to receive and handle client requests. 

When one is received, the lifeguard assigns the request to an idle agent process or puts it on 

queue until an agent is available to service the request. When a request comes in off the net- 

work: 

1.) The lifeguard finds the first available agent; 

2.) awakens the agent and passes the request to it. 

3.) The agent copies information from the request to its u__area; 

4.) invokes the ‘‘server’’ version of the requested system call; 

5.) puts itself back into the available process pool as an inactive process; 

6.) awaits a new request. 

Notice that any process in the process pool can act as an agent for any request from any 

client. 

In some cases the client will request more data than can be transmitted at once by the local 

area network. For this reason, a more to come flag was implemented in the returned packet. 

This notifies the client that more data should be expected. This feature is implemented at the 

lowest level of the request/reply packet handling routines. 

4.3.1 Start Up and Take Down 

Starting up EFS activity and taking it down is not quite as simple as with the standard UNIX 

mount(2) system call. As previously mentioned, a new call was introduced, rmount(2). This call 

is used to map a directory on the client machine into a directory on the server machine. Note 

that this is different from the mount(2) call which takes a ‘‘device name’’ on the local host and 

maps that into a directory on the local host. 

When rmount(2) is called, the client contacts the master server process and requests that 

agents be made available for it. If all of the protection checks are passed, the master server sets 

up an active connection and allows transfers to continue. An agent process is given the request 

and return to the client a network handle with which all further communication takes place. 

From that point on, all EFS requests use that same network handle along with any file-specific 

data when requesting data of the server. Note that this handle must be stored with each rinode 

because it is possible for a local machine to be a client of more than one server, each on a dif- 

ferent machine. That is to say, the local machine may remotely mount many different directory 

hierarchies, and each remote file system request is performed by an agent processes running on its 

behalf, picked from the process pool on each server at each request. 

5. For details of communications see the sections on it. The concepts that are discussed are explained in detail in 

other literature. 
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It follows that the inverse operation must also be performed. A new call, rumount(2), was 

introduced to break out of a connection. As in umount(2), checks must be made to test if there 

are any active inodes from that client into that file tree. Since this call is not made often, a sim- 

ple search is used to detect any server inodes that meet this criterion. If everything is clean, then 

the rumount(2) succeeds, otherwise an error is returned. As discussed later, there is a case where 

a rumount(2) is forced by error conditions. In that case, any file found active is made inactive. 

5. Communications Support 

Throughout the design of EFS, several assumptions were made about the attributes and 

capabilities of the underlying communications protocol. MASSCOMP supports an ethernet local- 

area-network using the DoD Internet protocol familyPos82a The programming interface to these 

protocols is the 4.2 BSD socket mechanismLef82a, Lef82b A primary assumption was that all 

communications between machines had to be carried out within the context of this mechanism. 

Interactions between client and server systems are transaction-based. Most transactions 

consist of a single message requesting information or the performance of an operation, followed 

by a single reply supplying the requested information or the completion status of the operation. 

Others, most notably read(2) and write(2), may involve the transfer of large amounts of data in a 

single transaction. Thus, the communications protocol must provide a mechanism for grouping 

related messages. Further, since some operations may take longer than others to complete, either 

because of scheduling anomalies on the server or because the agent process must wait for some 

event, several transactions may be pending concurrently between a given pair of hosts. 

Because transactions are so dynamic, the overhead of creating and destroying them must be 

low. To appreciate the importance of this requirement, consider that simply opening a remote 

file involves three separate transactions between client and server. This dynamism effectively 

rules out the possibility of using a protocol such as TCPPos81a which would require a separate 

socket and connection for each transaction. 

In the process of carrying out remote operations, there are various intermediate states on 

both the client and the server in which network failures can have serious ill effects. Assume for 

example that an often used directory such as /tmp becomes locked while a remote client is delet- 

ing a file from it. If in the midst of the operation the client system crashes, the server could 

slowly cease to function as processes queue up waiting to create or delete temporary files. It is 

clearly of vital importance that the communications mechanism provide reliable transfer of mes- 

sages, and timely indication of communication failures. 

To address these needs, a new Reliable Datagram Protocol (RDP) was designed. 

5.1 RDP Functional Description 

RDP provides a datagram-based communication service that guarantees in-order, reliable 

delivery of messages. That is, a successful return from a send operation implies that the message 

has been delivered to the peer RDP module on the destination host. An optional side effect of a 

send operation is the creation of a ‘‘connection’’ between the source and destination processes 

through which further related messages may be sent or received. The connection may be 

‘‘duplex’’, meaning that both source and destination processes may transmit on the connection, 

or ‘‘simplex’’, meaning that only one or the other may transmit. Such connections are indepen- 

dent of any others that may also be in progress within the context of the same socket, and in 

fact, an arbitrary number may exist concurrently. A single process may manage several connec- 

tions, or each of several processes sharing a common socket may manage a single connection. 

When doing a receive operation, a process indicates whether it wants a message related to 

an existing connection, or one that is either not associated with a connection or is the first in a 

new one. Upon return from the receive, an indication is given about whether further messages 

may be received on the same connection, and whether or not reply messages may be sent. 

139



Once a connection is established, each direction of transfer is under control of the sender. 

That is, the sender provides an end-of-data indication with the last message it sends, closing down 

one side of the connection. It may continue to receive from the other side, however, until the 

remote sender transmits its final message. 

RDP provides a timeout mechanism to automatically abort a connection when the peer sys- 

tem crashes or some other communication failure arises. Idle connections are maintained by 

periodic ‘‘keep-alive’’ messages that are invisible to the communicating processes. Reliable 

delivery is ensured by positive acknowledgement of each message as it is received, and by periodic 

retransmission of unacknowledged messages. 

5.2 RDP Implementation 

RDP is implemented on top of the Internet Protocol (IP)Pos81b This choice was made pri- 

marily because it simplified the implementation by allowing us to take advantage of the consider- 

able existing support framework for handling ‘‘Internet’’ addresses. 

Access to RDP is provided through the 4.2 BSD socket mechanism using the ‘‘Internet”’ 

addressing domain and the SOCK__RDM socket type. RDP sockets are given local address bindings 

in the same manner as a UDP socket. The binding consists of a 16 bit port number and a 32 bit 

IP address. 

Once the socket has been created and bound, a new address structure is used for send and 

receive Operations. It is an extension of the standard ‘‘Internet’’ address structure: 

struct sockaddr__rdp { 

short sin__family; 

u__short sin__port; 

struct in__addr sin__addr; 

u__long sin__txid; 

u__long sin__flags; 

}; 

The first three fields correspond exactly to their sockaddr__in counterparts. The two additional 

fields, which overlay previously unused parts of a sockaddr__in, carry the information needed to 

manage RDP connections. The sin__txid field holds a 32 bit connection identifier that is unique 

among all other connections related to the same socket on the local machine. The sin__flags field 

holds two OR-able flags, SF_MORE and SF_REPLY, whose functions are described below. 

5.2.1 Sending to an RDP Socket 

When a send operation is performed on an RDP socket, the sin_family, sin_port and 

sin__addr fields of the destination address must be set up as they would be for a UDP socket. If 

the sin__txid field is non-zero, it must identify an existing writable connection. 

A new connection is created when sin__txid is zero; upon return from the send, the zero is 

replaced by the new connection id. The bits in sin__flags determine whether a new connection 

will be simplex or duplex: SF_MORE alone creates a simplex connection from sender to receiver 

(i.e., in the direction of the original message); SF_REPLY alone creates a simplex connection in the 

opposite direction; SF_MORE and SF_REPLY together create a duplex connection. If neither bit is 

set, no connection is created, sin__txid remains zero, and the message is sent as a ‘‘standalone’’ 

datagram. 

After a connection is created, the SF_MORE bit indicates that further messages are to be 

sent. Once a message is sent with this bit cleared, further attempts to send on the connection are 

rejected with an EPIPE error code (and possibly a SIGPIPE signal). 
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5.2.2 Receiving from an RDP Socket 

In contrast to other protocols, the address structure passed to a receive operation on an RDP 

socket must be initialized before hand. In particular, the contents of the sin__txid field determine 

what effect the receive will have. If the field is non-zero, it must contain the identifier for an 

existing readable connection. Furthermore, the sin_addr and the sin__port fields must specify 

the remote address binding of the peer socket at the other end of the connection. In this case, 

the receive is satisfied only by a message sent on the specified connection; other pending messages 

directed to the same socket but on different connections remain queued. 

If sin__txid contains zero, then only a message which is either the first in a new connection 

or is ‘‘standalone’’ (i.e., not associated with any connection) may be received. When the first 

message in a new connection is received, the returned sin__txid field contains the unique identifier 

for the connection. When a standalone message is received, the sin__txid field remains zero. 

When any message is received on a connection (including the first message), sin__flags indi- 

cates connection status as follows: 

SF_MORE indicates that further messages may be received on the connection. Once a mes- 

sage is received with this bit cleared, further attempts to receive on the connection return with a 

zero byte count. 

SF_REPLY indicates whether messages may be sent on the connection. For a duplex connec- 

tion, it is typically set unless the receiving process has previously sent a message on the connec- 

tion without SF_MORE. 

5.3. Development using UDP 

Because the design and implementation of RDP proceeded in parallel with EFS implementa- 

tion, much of the initial testing and debugging of EFS was performed using the User Datagram 

Protocol (UDP)Pos80a as a communication base. This was made possible by a conscious effort to 

isolate as much as possible the details of the network interface from the new EFS kernel code. 

This proved to be a successful plan. Very early on in the project, basic remote operations were 

being tested with UDP. In fact, even as the more complex operations were completed, UDP contin- 

ued to serve as an adequate testing vehicle. Where UDP failed to satisfy EFS’s communication 

needs was when the time came to test multiple concurrent operations. The difficulty here is that 

when a single socket is used for all EFS-related network traffic, UDP provides no mechanism for 

associating a reply message with its corresponding request. Thus, when two client processes on 

the same machine are waiting for replies from their EFS agent processes, nothing guarantees that 

the replies will be received by the right client. 

6. Protection Issues 

One of the trickier issues that must be discussed is protection across the EFS. In UNIX, a 

user-name (clemc for example) is mapped to a machine specific number, called a user id or uid. 

It is this number, not the name, that UNIX uses to determine a user’s access rights. On one par- 

ticular machine, XORN for example, the name clemc may be mapped to uid 92, while on another 

machine, say VAMPIRE, the uid may 25 instead.° By convention, user programs read the password 

file to obtain the uid from a user-name or vice-versa. Some network applications, such as the 

remote copy program, rcp(1), pass the user-name to the remote side, which in turn converts it to 

the corresponding local wid. 

6. We have completely ignored the issue of users who have a different uwser-name on each machine. For instance, 

John Smith uses johns as his user name on the machine named EARTH, and uses smith as his user name on the 

machine named MOON. 
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In the case of EFS, when the two machines are able to share a file system, it would seem 

that they need to share a actual file in some way. Either they must share the password file, or 

the EFS software must have the server process convert each request from the uid from one client 

to a uid of the server. 

Therefore, we wrote a program, idupdate(8), that works like fsck(8), and walks the file sys- 

tem in a standalone mode, and changes the wid from one to another. This serves as a conversion 

tool for customers who have the problem of different machines that do not agree with each other 

on the wia’s for certain users, (i.e. clemc not being 92 on all of the machines, for instance.) 

After all of the machines in the network are converted to use the same password file, the 

normal UNIX protection mechanism may be used. This, however, is not enough. Without a 

change, this implementation would allow Root privileges on one machine to be maintained on the 

server. In most environments, there exist some files on the certain machines that should not be 

made accessible to everyone - including users from a remote machine with root privileges. For 

this reason, we added selective mount points. At rmount(8) time, the system administrator of the 

server has a file of mount points that a remote system is allowed to mount upon. In our VLSI 

example, that might be a path such as: /usr/vlsi/library. Any attempt by the client to mount 

elsewhere would fail. 

Furthermore, because of the back pointer to the client used in pathname walking, (see the 

dot-dot problem described later) a program would not be able to subvert this mount point by per- 

forming a change directory to the remote and then using dot-dot style pathnames to get at data it 

should not have. 

7. Error Recovery 

With two hosts and two network interfaces involved, the number of failure modes is much 

greater than the usual single machine case. In addition, side effects of certain EFS transactions 

can cause problems ranging from the invisible and harmless to complete paralysis of the server. 

Error recovery is possible and has been included as part of the EFS. 

7.1 Failure Modes 

All EFS transactions are between two machines at a time, and error recovery can be analyzed 

for the two machine case even when fifty or more machines are all running EFS on the same net- 

work. In all cases, errors are treated as specific to the client-server pair of the current transac- 

tion. 

The possible failure modes are: 

1.) Client failure 

2.) Client net failure 

3.) Server failure 

4.) Server net failure. 

5.) Any combination thereof. 

Client or server failure means an operating system failure such as a crash or power down. 

Net failure is the failure of the network interface or communications link without the host’s fail- 

ing also. This may result from intermittent cable faults or where the network is implemented in a 

coprocessor with a address space seperate from the host, a failure in that processor. 
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7.2 Side Effects 

The client-server model used for EFS is not stateless. Once an rmount(2) has been done, 

information is required on both server and client to maintain the EFS relationship. Since EFS 

intervenes at the inode level in the kernel, some bookkeeping must be done to maintain reference 

counts sensibly. A rinode in-core on a client requires the associated inode on the server to be in- 

core there. This is accomplished by maintaining inode reference counts on the server for each 

client transaction on that inode. The effect is that if a client is exclusively using an inode on a 

server, the reference count on the server will mirror that on the client at all times. It is tricky but 

possible to achieve this, unless a failure occurs. Depending on which failure mode has occurred, 

a server may find itself with inodes in-core that are not being referenced by any local process but 

which have non-zero counts or a client may find itself with rinodes in-core which cannot be used 

since the server cannot be accessed. 

A much more serious problem is the locked/unlocked problem. Inodes, being a shared 

resource, have a locking and unlocking mechanism that is used to prevent simultaneous access by 

two processes. Any process trying to access a locked inode blocks until it is unlocked. Certain 

EFS transactions leave inodes locked on the server, waiting for the next transaction from the client 

to complete the system call and free the inode. If a client failure occurs between these transac- 

tions, the server has locked inodes in-core which have been locked by a now-dead client. 

7.3 Error Detection 

There are two methods of error detection. Any client or server which receives an error 

return from a send or receive operation will activate a failure test immediately. If a failure of the 

local network interface is detected or if the operation times out (signifying the death of the other 

machine or its net interface), appropriate recovery procedures are instituted (see below). If not, 

the immediate system call or transaction still fails and returns an error code. It is simply too dif- 

ficult (or impossible) to retry transactions at this point because of uncertainty as to exactly what 

happened before the failure. 

The method of error detection just described is sufficient for the client since there are no 

side effects there that can cause damage in the absence of EFS activity. The case on the server is 

much different. Consider what happens when ten clients start ten transactions which leave ten 

inodes locked on the server, then each promptly fails or the network fails. The server must 

detect, in the absence of EFS traffic, that something is wrong and that certain inodes are locked 

on behalf of clients which could be unreachable right now. In order to detect this situation, the 

time of the last transaction from a given client is kept by the EFS /ifeguard process. Periodically, 

a function is called which checks these ‘‘last transaction times’’ and sends a packet to any clients 

which haven’t been heard from for a certain length of time. If no answer is received, the server 

recovers from that client (see below) and continues to check the other clients with which it has 

established a remote mount relationship until it has verified that all clients are alive. 

7.4 Client Recovery 

The simpler of the two cases by far, recovery on the client merely consists of identifying the 

offending server and unmounting all directories associated with that server. If the failure of the 

client’s net interface is detected, then all rmounts are taken down. Rinodes which are being 

accessed by other processes on the client will each cause some net failure when accessed and will 

be cleared at that time. 
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7.5 Server Recovery 

The ability of the server to recover is based on keeping information about inodes which are 

in-core on behalf of clients and which of those are locked. When a server process detects an 

error in trying to reach a particular client, it simply looks up all of the inodes which are in-core 

on behalf of that client and clears them out. If it is known a priori which inodes are locked, it is 

possible to circumvent the blocking problem mentioned above. Also, any rmounts which the 

dead client has are also removed from the server’s rmount table. 

Finally, each time a client tries to rmount to a particular server for (what the client consid- 

ers) the first time (i.e., there are no rmounts on the client to that particular server) this belief is 

communicated to the server. If the server finds that it has rmounts from that client, it clears 

them out (and any inodes in-core from that client) before completing the current rmount request. 

This scheme corrects for the case where a client has failed and been rebooted before the server 

notices it. 

8. Some Interesting Problems 

In the course of development of EFS a number of problems were encountered that are gen- 

eric to a file system that maps across multiple machines. 

1.) The core file problem. 

2.) The problem of server processes blocking on a client request. 

3.) The problem of pathnames that cross ‘‘mount points”’ in a directory hierarchy. 

4.) The stat(2) problem. 

5.) The ustat(2) problem. 

The next section will discuss each of these and how our implementation addressed each one. 

8.1 The Core File Problem 

One of the more interesting things to try on a machine that runs an EFS is to determine 

where the system should place the core file when an error arises that causes UNIX to create an 

image of the running process. This is a problem because of the way UNIX handles the core file. 

When UNIX decides to create a core file, it opens the current directory and creates the file called 

core in it. As it turns out, in our implementation, the core-file problem falls away. 

Because the current directory is an rinode instead of a normal inode, the system does not 

see the difference and the normal UNIX mechanism takes place: UNIX opens a file in the current 

directory called core. The open is done with the inode of the current directory which in this case 

happens to be an rinode, the same basic frame work applies. 

8.2 The Blocking Problem 

As mentioned earlier, an EFS server maintains a pool of processes to act as agents for 

remote clients. The astute reader might ask, ‘‘Why not use a single agent process for each active 

EFS connection?’’? Arnovitz articulated the question further by asking: ‘‘If a single process is used 

as an agent, what happens if that process needs to block?’’Arn84a The answer for a single agent 

process is that if the agent process must block, then all other requests from the client host will 

have to block waiting until the first request completes. 

By using a pool of processes, an agent process can block on any single request without lock- 

ing out further requests, either from another process on the same client system or from another 

client system altogether. If a second request comes in before the first one completes, a second 

agent process is found from the process pool to perform the new request. 
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8.3 Mount Points 

A tricky problem in providing a fully transparent EFS is the correct handling of file system 

‘‘back pointers’’ (i.e., links to shallower levels of the directory tree). Under UNIX, every directory 

initially contains two entries: ‘‘.”’ (pronounced dot) and ‘‘..’’ (pronounced dot dot). The file 

“*””? is a link to the directory itself. This is provided as a convenience for the user. The file ‘‘..’’ 

on the other hand, is a link to the parent directory of the current directory. Thus if the user 

types: 

cd foo 

[any set of commands that don’t 

change the current directory] 

cde. 

The user first enters the directory ‘‘foo,’’ performs the given set of commands and then when the 

command ‘‘cd ..’’ is executed, the user is placed in the directory from whence he originated. A 

problem arises if the directory ‘‘foo’’ is actually a remote directory. After the user executes the 

chdir(2) system call that moves his current directory to the remote machine, all pathnames are 

relative to the remote directory. Yet the directory in which the user lands on the remote machine 

contains an entry called: ‘‘..’’.. When the second chdir(2) call is executed to perform the ‘‘cd ..’’, 

the server really needs to gate the user back to local host; not walk back through the path on that 
e399 

machine pointed too by “‘.. 

This example demonstrates the need for the concept of a ‘‘mount point.’’ When a file sys- 

tem is mounted remotely, the remote system must mark the in-core inode for that directory as a 

‘mount point’’ for a remote file system. When a namei path walk is run and a ‘‘mount point”’ 

is crossed, the remote must decide if the processes that is walking this path is an EFS agent pro- 

cess or a normal user process. If it is a normal user process running on the remote host, the 

‘‘mount point’’ is ignored and ‘‘..’’ is followed. However, if it is an agent process that is walk- 

ing the path and the ‘‘mount point’’ originated from the client on whose behalf the agent is act- 

ing, namei must return a message back to the client system stating that the remainder of the path 

must be interpreted locally. 

8.4 The stat(2) problem 

In the UNIX Timesharing System, a system call is provided to get information about any file 

in the system. The call, stat(2), returns many pieces of information about the file. Two of those 

pieces are the /-number and the device number on which the file is stored. This information can 

be used by user programs such as the UNIX file copy utility, cp(1). One of the better human 

engineered features of cp(1) is that is does a stat(2) call on the source and the destination. It the 

compares the two device numbers and I-numbers for equality. If they are the same, cp(1) recog- 

nizes that the user has requested it to copy a file onto itself which would destroy the file, so it 

returns an error. Unfortunately, under EFS a file is no longer uniquely identified by just its dev- 

ice number and I-number. The comparison must now include a machine identifier. In EFS, the 

unique network handle, a 32 bit number, is returned as a new field in the stat(2) structure that 

contains the machine identifier. 

Thus the cp(1) program had to be changed to use the new information. It now tests for 

equality of all three pieces that identify each file: device number, I-number, and the machine 

indentifier. To continue to meet the constraint that old code does not have to be recompiled, we 

retained the old stat(2) system call with its original system call number, but renamed it to 

oldstat(2). We then introduced a new stat(2) system call with a hidden third argument.’ This 

7. The third argument is maintained by the C library linkage. The user never sees it. 
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argument is the number of bytes that the stat(2) system call is expecting. As a result, all code 

that is compiled and linked will use the new call, as the old call is no longer in the distributed C 

library. 

In this manner, we continued to have binary compatibility between the old user binaries and 

the new operating system product, but have warned users that a certain class of programs, that 

were written without EFS in mind may exhibit incorrect behavior when used across two different 

machines. In the case of cp(1), unless we had fixed it, it would have returned an error to a user 

stating that two files were the same file when in fact they were not. This behavior would not 

damage anything, but would cause a great deal of aggravation to the user. 

8.5 The ustat(2) problem. 

Some versions of UNIX contain a ustat(2) system call. This call returns information about a 

given file system, such as the amount of free space on a device that is passed as a parameter. 

The ed(1) text editor, performs a stat(2) on a file to see onto which device the file will be stored, 

and then calls ustat(2) to see if there is enough space to store the file. Unfortunately, with EFS 

the device number will be from the host where the file is stored, and ustat(2) will be local. Ed(1) 

was not working correctly within the multi-machine environment. The solution was to introduced 

a new system call, rustat(2) that takes the machine identifier as a parameter and then change 

ed(1) to use it. 

Again, this is a function of a program that was trying to do something that is valid on a 

single machine, but not valid in a multi-machine environment. It is far easier to fix those few 

programs that do not work correctly, than it is to try to come up with a hack that fakes them 

into working. 

9. What EFS Cannot Do 

9.1 Remote Devices 

In its present form, EFS provides transparent remote access only to disk files; it does not 

support remote devices. The reasons for this are twofold. First, when performing I/O opera- 

tions on certain devices, ftys in particular, there is the possibility for indefinite delays to occur. 

For example, a read from a user’s terminal device may block for hours while he steps out for a 

bite of lunch. In contrast, accesses to disk files, though they may cause the requesting process to 

block, always complete within a short period of time. In the EFS environment where a remote 

access is actually carried out by an agent process on the system where the resource physically 

resides, it is crucial that the operation be completed quickly. This is to ensure that the agent 

processes (a relatively scarce resource) do not all become blocked indefinitely, which in turn 

ensures that a remote client will always receive service in a timely manner. 

The second difficulty involved with remote device access is the handling of the ioct/ system 

call. The heart of this problem is that an ioct/ command may call for the transfer of an arbitrary 

amount of data between the requesting program’s address space and the device driver that imple- 

ments the command. Further, the format of the data and the direction of transfer are completely 

determined by the device driver; that information is unavailable to any other part of the kernel. 

In the case where the device driver is on a remote machine, the local system cannot know a priori 

how much data, if any, to fetch from user space to send to the server. An obvious solution is to 

have the server request the appropriate amount of data from the client as needed, though it does 

incur the overhead of extra network transactions. Other approaches to this and other problems 

with remote devices are the subject of future EFS development work. 
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9.2 Diskless Nodes 

The concept of ‘‘diskless workstations’’ is one that has gained increasing popularity of late. 

EFS in its current state does not directly address this issue. It assumes that each participating 

workstation has at least some local backing store containing its root file system, operating system 

image, paging area and various other files and programs necessary to boot up. Obstacles that 

stand between EFS and a completely diskless environment include remote paging, obtaining the 

initial boot image, and construction of an in-core root file system. An additional problem that 

arises where the network interface is an intelligent front-end processor is the initial down-loading 

that must precede any other network communications. 

Though the authors believe that many users of diskless workstations rapidly find themselves 

in the market for add-in mass storage, this is another area where future development effort will 

be concentrated. 

10. Summary 

The principal motivation behind the MASSCOMP EFS project was the desire to offer our users 

fully transparent access to files on remote computers. The benefits yielded by this capability are 

more cost-effective use of mass storage capacity through reduced duplication of common files, 

and simplified management of shared databases. The goal of transparency has been achieved by 

building the concept of ‘‘remoteness’’ into the existing UNIX file system I/O architecture. In the 

same way that the existing UNIX mount system call attaches a local disk partition into the file sys- 

tem hierarchy, the new rmount system call attaches a subtree of a remote system’s directory struc- 

ture into the local name space. Because this functionality is built into the kernel, and not imple- 

mented as a user-level library, existing programs may access remote files without recompilation, 

and indeed without even being aware of their remoteness. 

The implementation model is based on client-server interactions. Each file-related system 

call (as well as several internal system routines) has a client counterpart that takes responsibility 

for contacting an agent process on the remote system, passing the necessary information to it, 

and receiving the response. Each system supporting EFS also maintains a pool of kernel processes 

that perform the operations requested by remote clients. The principal kernel structure that 

describes a file, the inode is augmented with additional information to form an rinode. It is the 

rinode that informs a system call of a file’s remoteness and provides the key that allows the client 

to identify the correct file to the server where it physically resides. 

Inasmuch as the UNIX file protection scheme is based not on login names but on numeric 

user-ids, it was felt to be essential that all machines participating in an EFS share a common 

login-name to user-id correspondence. This is not only to avoid the complication of having to 

dynamically translate from one mapping to another, but also to promote the overall transparency 

of the system. Part of the EFS project included developing tools to assist individual system 

administrators in bringing their local file systems into correspondence with a network-wide map- 

ping. 

When EFS was being designed, consideration was given to what kind of communication ser- 

vices were necessary to support it. Because a fair amount of complexity in kernel modifications 

was anticipated, there was a strong desire to keep the communications interface simple. An 

examination of the then available protocols (TCP and UDP) revealed that neither was particularly 

suited to the task. TCP provides reliable connections but requires too much setup overhead to 

create a new connection for each client-server interaction. UDP is more suited to the client-server 

transaction model but does not provide for reliable delivery and has no capability to de-multiplex 

messages directed to different processes without requiring a socket per process. In view of these 

shortcomings, a reliable datagram protocol (RDP) was designed and implemented, providing 

guaranteed message delivery (or notification of failure) and the ability to dynamically create mul- 

tiple low-overhead connections through a single socket. 
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One of the more challenging aspects of the EFS project was finding solutions to all of the 

new error situations that can arise in a distributed environment. Mechanisms were developed to 

detect and recover from errors resulting both from failure of a remote machine and from the 

disruption of network communications. 

Areas not currently addressed by EFS are support for remote device files, and the operation 

of systems without local mass storage. Both of these areas are of interest to the authors and are 

the subjects of ongoing development efforts. 
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