
‭Change and Non-Change in NFS®‬
‭Geoff Arnold‬

‭Sun Microsystems, Inc.‬
‭Email: geoff.arnold@sun.com‬

‭September 12, 1991.‬

‭ABSTRACT‬

‭Sun‬ ‭Microsystems‬ ‭began‬ ‭developing‬ ‭the‬ ‭Network‬ ‭File‬
‭System‬ ‭in‬ ‭1984,‬ ‭and‬ ‭seven‬ ‭years‬ ‭later‬ ‭it‬ ‭is‬ ‭the‬ ‭de‬‭facto‬
‭standard‬‭for‬‭UNIX‬‭and‬‭heterogeneous‬‭file‬‭sharing.‬‭Yet‬‭the‬
‭NFS‬ ‭protocol‬ ‭in‬ ‭use‬ ‭today‬ ‭is‬‭unchanged‬‭from‬‭that‬‭which‬
‭formed‬ ‭the‬ ‭basis‬ ‭for‬ ‭the‬ ‭original‬ ‭release.‬ ‭This‬ ‭lack‬ ‭of‬
‭change‬ ‭has‬ ‭occurred‬ ‭in‬ ‭spite‬ ‭of‬ ‭a‬ ‭consensus‬ ‭that‬
‭improvements‬ ‭were‬ ‭needed‬ ‭and‬ ‭after‬ ‭at‬ ‭least‬ ‭four‬ ‭draft‬
‭revi-sions.‬ ‭In‬ ‭this‬ ‭paper‬ ‭we'll‬ ‭explore‬ ‭the‬ ‭reasons‬ ‭and‬
‭consequences‬ ‭of‬ ‭this‬ ‭state‬ ‭of‬ ‭affairs.‬ ‭Note‬ ‭that‬ ‭we‬ ‭are‬
‭discussing‬ ‭the‬ ‭architecture‬ ‭of‬ ‭NFS,‬ ‭rather‬‭than‬‭critiquing‬
‭any particular implementation.‬

‭1. Introduction‬

‭In 1984, engineers at Sun Microsystems began the development of NFS, the Network File‬
‭System. [Sandberg85] At the beginning of 1985, three companies (Sun, Gould and Pyramid)‬
‭demonstrated NFS operating on four different systems (Sun, Pyramid, Gould and a Digital‬
‭VAX running 4.2BSD UNIX®). A year later there were sixteen different implementations‬
‭based on five different operating systems, including PCs running MS-DOS and VAX/VMS®.‬
‭Since then NFS has been implemented on almost every type of system, and for some‬
‭platforms (e.g. MS-DOS, VMS) there are a number of competing implementations. NFS is a‬
‭standard, both de facto and de jure - it is defined in an RFC [RFC1094] and in two X/Open‬
‭specifications [X/Open90, X/Open91]. In defining its distributed computing environment‬
‭(DCE), OSF did not even bother to debate the use of NFS: it was assumed to be present as‬
‭an integral part of the base operating system.‬

‭©1991, Geoffrey M. Arnold. Not to be reproduced without permission. This paper was‬
‭presented on September 12, 1991, in Birmingham England, at the Sun User '91 conference,‬
‭which was organized by the Sun UK User Group in collaboration with the Sun User Groups‬
‭of Europe.‬



‭Back in 1984, the demand for distributed file access capabilities was clear, and several‬
‭companies and universities had introduced different solutions. Only Sun seemed interested‬
‭in opening up the architecture and establishing a heterogeneous standard, and in view of‬
‭their aggressive promotion of the technology and relatively liberal licensing policies the‬
‭success of NFS should not be a surprise. What would have been surprising to the‬
‭developers in 1984 is that over seven years later all of the NFS implementations in use are‬
‭still based on version 2 of the NFS protocol. (Version 1, which identified a preliminary design‬
‭in which the mount and NFS protocols were integrated, was never made public.) The‬
‭continued use of NFS version 2 can hardly be attributed to its perfection: not only have there‬
‭been a number of studies bemoaning the various bugs, warts and deficiencies in both the‬
‭protocol and its implementation [e.g. Reid90], but, starting in 1986, there have been at least‬
‭four draft proposals for a protocol revision. Yet five years later no successor has been‬
‭anointed, and NFS 2 continues to be used.‬

‭The purpose of this paper is to explore the reasons for this state of affairs. We examine the‬
‭various changes which have been proposed, and consider the ways in which the‬
‭implementations of NFS have evolved to overcome limitations in the protocol. We ponder on‬
‭the lessons which may be learned from the experiences of the last seven years. Finally we‬
‭assess the state of NFS today, and speculate on possible future changes always bearing in‬
‭mind the poor track record of prognosticators in this area!‬

‭2. Background‬

‭The original design goals of NFS emphasized five points:‬

‭1)‬ ‭Machine and Operating System Independence‬
‭2)‬ ‭Crash Recovery‬
‭3)‬ ‭Transparent Access‬
‭4)‬ ‭UNIX Semantics Maintained on UNIX Client‬
‭5)‬ ‭Reasonable Performance‬

‭[‬‭Sandberg86‬‭]. There are some intrinsic conflicts between these goals, which are reflected in‬
‭the design of the protocol and in its implementation. The way in which they were or were not‬
‭adequately resolved is indicative of a sixth design goal, unstated in the published literature‬
‭but very clearly articulated in the internal project papers.‬

‭6) NFS will evolve to reflect experiences in its use.‬

‭In effect, the original design of the NFS protocol reflects a decision to address the primary‬
‭needs of the Sun/UNIX user coupled with a commitment to a stepwise refinement of the‬
‭protocol as experience was obtained in its use in real-world and non-UNIX environments.‬
‭The fact that a distinction was made between (3) and (4) is interesting: it was recognized‬
‭from the outset that there were aspects of the UNIX file system which were extremely‬
‭difficult to implement efficiently in a networked environment, especially using a stateless‬
‭model.‬



‭The main design theme which followed from these goals was that of statelessness. In the‬
‭NFS literature, this is defined as meaning that "the parameters to each procedure contain all‬
‭of the information necessary to complete the call, and the server does not keep track of any‬
‭past requests." [‬‭Sandberg86‬‭] As a description of the operation of the NFS service,‬
‭statelessness is a convenient tag, but it should be recognized that in fact NFS uses a‬
‭distributed and replicated state scheme. In response to requests from the client, the server‬
‭returns tokens which encode certain information about the state of the server's filestore. The‬
‭client includes these tokens in subsequent requests which refer to the server's filestore. The‬
‭"statelessness" is in fact an assertion that the server will honor tokens for an indefinite‬
‭period, even over network and server failures. Since the state of the filestore can change‬
‭between the granting of the token and its use, an NFS client must minimize the chances of‬
‭initiating operations which might depend on an out-of-date token. The tokens are of two‬
‭kinds: file handles, which identify objects in the filestore, and directory search cookies, which‬
‭define how a client may retrieve the "next" entry in a directory.‬

‭The "statelessness" of NFS extended to the use of a stateless, or connectionless, protocol:‬
‭UDP. Most NFS requests are designed to be idempotent, so that if a request or response is‬
‭lost in transit the client can safely reissue the request. In the case of operations which create‬
‭or remove filesystem objects, a retransmission of a request which was already processed‬
‭may lead to unexpected behavior: for example, an unlink operation may succeed, the reply‬
‭is lost, and the retransmitted request fails because the file no longer exists. In this case, the‬
‭effect on the server filestore is that which was intended, even though the result returned to‬
‭the application indicated a failure. In other cases, such as the admittedly contrived scenario‬
‭in [‬‭Reid90‬‭], data loss may occur.‬

‭The initial version of NFS met its design goals in most areas. (Various critics have argued‬
‭that the first objective was largely ignored, since the file system model was almost pure‬
‭4.2BSD UNIX. However the success of the various non-UNIX implementations suggests that‬
‭the result was satisfactory in this respect, whether by design or by accident.) The goals of‬
‭transparency and preservation of UNIX semantics were substantially attained in the multiple‬
‭readers and single writer cases. (The troublesome situation of the program which opens,‬
‭unlinks, and then uses a temporary file was solved by arranging for the client to silently‬
‭rename the file and unlinking it later.) The multiple writer situation was much less clear-cut,‬
‭but fortunately the semantics of such operations in a stand-alone UNIX system were‬
‭sufficiently obscure that few programmers had ever relied on them. In particular, the lack of a‬
‭file locking mechanism within NFS tended to perpetuate the "traditional" UNIX techniques‬
‭(such as relying on the presence or absence of a lock file). Eventually Sun introduced the‬
‭network lock manager, which (when it worked correctly) alleviated most of the problems of‬
‭multiple writer semantics. At the same time, the deployment of NFS on a wider range of‬
‭systems with widely varying performance characteristics increased the importance of‬
‭idempotency, and techniques were introduced to allow the retransmission behavior to be‬
‭tuned, and eventually determined automatically.‬

‭As users attempted to increase the client/server ratio, another phenomenon reared its head.‬
‭If a server became overloaded and unresponsive, its client systems were likely to retransmit‬
‭their requests, increasing the load on the server (and thus slowing it still further) while at the‬
‭same time increasing the likelihood that the retransmission of non-idempotent requests‬



‭would introduce spurious errors. The situation was ameliorated by the introduction of the‬
‭server-side caching techniques described in [‬‭Juszczak89‬‭].‬

‭3. Needs for change‬

‭The necessity for changes to NFS was recognized at the outset, and was vigorously‬
‭debated, especially at the seminars which took place during each year's Connectathon.‬

‭The changes which were discussed fell into a number of categories:‬

‭1)‬ ‭General protocol clean-up. One example is the interpretation of the "Settable‬
‭Attributes" structure, in which setting an element to all-ones means that the‬
‭corresponding file attribute should not be changed. This is reasonable if all elements‬
‭are unsigned integers, usable (with the potential for error) where elements are‬
‭structures composed of unsigned integers (as in a timestamp), and impractical if the‬
‭attributes are to be extended to include more complex types.‬

‭2)‬ ‭Bug fixes to improve the correctness of NFS operation. In general, these are‬
‭designed to address the situation where an NFS client makes a request which is‬
‭based on the prior state of the server's file store, but intervening changes on the‬
‭server confuse things. For example, a client reads part of a directory, the server‬
‭reorganizes the directory, and then the client tries to read more of the directory. The‬
‭"cookie" identifying the next entry in the directory may no longer be valid, but the‬
‭protocol does not provide a way to detect or report this situation. A solution is for‬
‭every file handle presented in a request to be accompanied by a timestamp‬
‭identifying the client's idea of the modification time for the file or directory. The server‬
‭can reject requests for which the timestamp is incorrect.‬

‭3)‬ ‭Protocol (as distinct from implementation) changes to improve "performance" as‬
‭measured in various ways, including transaction response time, throughput, server‬
‭load, network load, etc. One such protocol element - the NFSPROC_WRITECACHE‬
‭request -was included in the specification but was never implemented. Other‬
‭proposals included (optionally) returning file attributes along with file names as part of‬
‭the NFSPROC_READDIR response, thus avoiding the need to make a separate‬
‭NFSPROC_LOOKUP RPC for each file.‬

‭4)‬ ‭Changes to improve operations in wide area networks, or more generally to adapt to‬
‭the characteristics of different servers and networks.‬

‭5)‬ ‭Attempts to support all local file system semantics where both client and server are‬
‭running UNIX. We will consider this subject later,‬

‭6)‬ ‭Enhancements to support non-UNIX file system types, and to handle heterogeneous‬
‭client-server combinations better. Some of these changes were simple: for example,‬
‭to increase the maximum file size from a 32-bit to a 64-bit quantity, or extending the‬
‭File System Attributes structure so that the server could advise the client about the‬
‭characteristics of the server file name syntax, unsupported procedures, timestamp‬
‭granularity, and so forth.‬

‭7)‬ ‭Changes to incorporate elements of extensibility, with the aim of supporting new‬
‭requirements and systems without a protocol revision. These proposals were‬
‭intended to allow changes in any of the preceding six categories to be achieved‬



‭without necessitating a protocol change. This line of thinking culminated in NeFS,‬
‭discussed below.‬

‭It is important to note that while the objective of the various changes was to improve the NFS‬
‭service, as realized by the complete Open Network Computing protocol suite (RPC, XDR,‬
‭NFS, mount, lock manager, and status monitor), most attention was focussed on changes to‬
‭the NFS protocol itself.‬

‭4. Lack of change‬

‭By the end of 1986 a number of desirable changes to the protocol had been identified, and a‬
‭draft specification for NFS version 3 was issued in January, 1987. The major changes were:‬

‭1)‬ ‭the addition of an access permission checking procedure, NFSPROC_ACCESS‬
‭2)‬ ‭procedures to perform atomic create and rename operations‬
‭3)‬ ‭mechanisms to support true idempotency‬
‭4)‬ ‭using a single set of procedures for the creation and removal of directories and files‬
‭5)‬ ‭support of asynchronous writes using NFSPROC_WRITECACHE‬
‭6)‬ ‭support for record-oriented files‬
‭7)‬ ‭support for file versions, as in VMS‬
‭8)‬ ‭elimination of many UNIXisms in the size and attributes of files‬

‭This draft [‬‭Sandberg87‬‭] was distributed to the NFS licensees at the 1987 Connectathon‬
‭(multi-vendor testing session), and was well received. Before it could be implemented,‬
‭however, Sun Microsystems embarked on the development of the Network Software‬
‭Environment product. Since this relied heavily on both NFS and a new "Translucent File‬
‭Service" (TFS®) [‬‭Hendricks88‬‭,‬‭Hendricks90‬‭], and many of the key NFS developers were‬
‭involved in the project, Sun decided to defer the implementation of NFS version 3 until NSE‬
‭was completed. One important NFS-related spin-off from the NSE was the automounter.‬
‭[‬‭Callaghan89‬‭]‬

‭The January, 1987 draft had focussed on improving UNIX operations and adding some‬
‭VMS-specific enhancements. A year later, these changes were felt to be inadequate, for two‬
‭reasons. First, work was going on to port NFS to a wider range of systems, including the‬
‭Apple Macintosh and IBM mainframes. Second, Sun had purchased Centram Systems West‬
‭(later TOPS, now Sitka), a vendor of entry level personal computer networking products, and‬
‭had announced its intention to "merge" the TOPS® architecture with NFS. Since the basis of‬
‭the new architecture was to be NFS, and it had to be capable of meeting the needs of the‬
‭installed base of TOPS users, the design team examined the NFS protocol suite to‬
‭determine its suitability for use in a simple, peer-to-peer network of PCs and Macintoshes.‬
‭This effort coincided with an upsurge in interest within the UNIX community in the possibility‬
‭of extending the traditional UNIX file system model in various ways, and also of automating‬
‭various aspects of the UNIX/TCP/IP networking mechanisms (exemplified by the Sun386i‬
‭workstation's "Plug'n'Play" architecture).‬



‭The result of this examination was a new draft specification issued in January, 1988‬
‭[‬‭Sandberg88‬‭] and revised in September of that year [‬‭Sun88‬‭]. In addition to the changes‬
‭listed above, the protocol included mechanisms for the storage and retrieval of "extended‬
‭attributes", represented as text keyword-value pairs, and the VMS-style version mechanism‬
‭was extended to include Macintosh file system components.‬

‭The reaction to this draft specification was generally negative. In part this was because it‬
‭was recognized that it would take time to deploy the new protocol and for NFS vendors to‬
‭deliver their ports. This meant that it would be necessary to support both the old and new‬
‭versions of the protocols. For UNIX implementations, this would require the addition of a‬
‭significant amount of new code which would be of little or no benefit to UNIX users. For DOS‬
‭clients, it was clearly impossible to accommodate both versions in the limited memory‬
‭available, and interoperability considerations led to the conclusion that version 3 could not‬
‭be adopted until there was a critical mass of version 3 servers. For Macintosh systems, there‬
‭was an even bigger problem: the extensions did not go far enough to allow the semantics of‬
‭Macintosh file operations to be preserved.‬

‭The latter consideration led to the drafting of a new, supplementary specification, denoted‬
‭NFS:TX [‬‭Sun89‬‭]. This document, which was not widely distributed, proposed the creation of‬
‭a set of so-called "Transparency eXtensions", to be implemented as distinct RPC services,‬
‭which would supplement (and where necessary replace) elements of the NFS service. The‬
‭new model overcame a major problem with the 1988 NFS specifications: if extended‬
‭attributes were an intrinsic part of the NFS protocol, the NFS server process(es) would need‬
‭direct and efficient access to a complex database in order to store the new attributes. In a‬
‭UNIX kernel implementation this might have severely constrained the kind of storage system‬
‭that could be used. The new architecture opened up the possibility of implementing these‬
‭services in a user level process, and even of providing proxy attribute servers for, e.g.,‬
‭read-only file systems. However the problems of synchronization between the various‬
‭services made it difficult to see how a high performance implementation could be created.‬

‭The NFS:TX model represented the last gasp of the effort to merge TOPS and NFS. If a‬
‭special set of services was required to support Macintosh clients, the easiest approach was‬
‭obviously to implement a UNIX server for a native Macintosh file sharing model, whether‬
‭TOPS or AFP. Since this was something that had already been done, the merge project was‬
‭abandoned and the TOPS company and products were repositioned.‬

‭With the demise of the merge, consideration was given to implementing a straightforward‬
‭protocol revision, possibly based on the 1987 draft. However a number of concerns‬
‭remained. Uncertainty about the evolution of file systems suggested that a degree of‬
‭extensibility was desirable and if this was true for file attributes, was it not also true for‬
‭operations? While it is usually possible to represent a file system function as a sequence of‬
‭NFS RPCs, efficiency and idempotency are often lost. And occasionally it is not possible to‬
‭preserve client semantics. (Consider, for example, the implementation of a DOS "delete files‬
‭matching pattern" operation where the server is a mainframe which sorts and compacts a‬
‭directory whenever a file is deleted.)‬

‭At Connectathon in 1990 Sun unveiled the Network Extensible File System (or NeFS)‬
‭protocol specification [‬‭Sun90‬‭]. This described a radically new architecture reminiscent of the‬



‭NeWS® window system [‬‭Gosling89‬‭]. Instead of using a fixed set of remote procedure calls,‬
‭NeFS defines a tokenized language based on the PostScript® page description language.‬
‭An NeFS client performs an operation by sending a procedure encoded in the NeFS‬
‭language to the server, which executes the procedure on behalf of the client and returns the‬
‭results of the function. Procedures could range in scope and complexity from a simple‬
‭request for the size of a file to a recursive copy of a complete directory hierarchy.‬

‭One interesting side-effect of the NeFS model is that it represents a shift from a "smart‬
‭client" towards a "smart server" worldview. In NFS, a server need only perform a small, fixed‬
‭set of operations, and it is the responsibility of the client to compose and execute a‬
‭sequence of these operations to achieve the desired effect. In NeFS, the client can simply‬
‭issue a "canned" NeFS procedure for each of the client file system functions, and it is the‬
‭responsibility of the server to manage storage for requests, schedule multiple threads of‬
‭execution from various clients, and recognize and deal with requests which consume more‬
‭server resources than permitted, or which attempt to violate security.‬

‭NeFS introduces its own very special set of problems. The design of the programs to be sent‬
‭in each RPC is non-trivial, and the more complex the request, the more difficult it is to verify‬
‭its idempotency and atomicity. This makes it very difficult to exploit the potential extensibility‬
‭of NeFS. If a connectionless transport is used, clients must be prepared to retransmit‬
‭requests as in NFS version 2, and the design of a server-side request cache becomes vastly‬
‭more complex. It can be argued that this more or less mandates the use of a‬
‭connection-oriented transport protocol.‬

‭The NeFS proposal was debated vigorously on the Usenet (in the newsgroup‬
‭comp.protocols.nfs‬‭) and in other forums. The consensus was that while the scheme system‬
‭would probably work, it offered no clear advantage over NFS. The NeFS specification was‬
‭included in Sun's original submission to OSF for the DCE RFT (Request For Technology) in‬
‭early 1990, but was then withdrawn without explanation. Although work continued within Sun‬
‭for a period of time, the project was shelved soon afterwards.‬

‭5. Consequences of non-change.‬

‭The first thing to note is that NFS has been a tremendous success over the last seven years.‬
‭Despite the frequent criticisms, and the presence of a number of obvious deficiencies, NFS‬
‭has done the job. There are around a million and a half systems running NFS today, and for‬
‭most of the users of these systems the use of NFS is completely transparent.‬

‭The second thing is that the absence of any change to the NFS protocol specification does‬
‭not mean that nothing has changed in the world of NFS. Since the publication of the protocol‬
‭and the first code release back in 1985, Sun and other NFS licensees have been quite busy‬

‭1)‬ ‭Introduction of the Network Lock Manager and Network Status Monitor.‬
‭2)‬ ‭Revision of the NLM protocol to support DOS file sharing.‬
‭3)‬ ‭"nd elimination": using NFS for diskless clients.‬
‭4)‬ ‭Introduction of DES-based secure RPC, and its use in secure NFS. [‬‭Taylor86‬‭]‬



‭5)‬ ‭The revision of the mount protocol for POSIX compliance.‬
‭6)‬ ‭The introduction of the Automounter. [‬‭Callaghan89‬‭]‬
‭7)‬ ‭Chet Juszczak's "work avoidance" cache design. [‬‭Juszczak89‬‭]‬
‭8)‬ ‭Introduction of adaptive RPC timeout and request size techniques. [‬‭Nowicki89‬‭]‬
‭9)‬ ‭Use of NFS over TCP in 4.3BSD Reno. [‬‭Macklem90‬‭]‬
‭10)‬‭Development of various commercial NFS accelerator products, including‬

‭PrestoServe™ and eNFS™‬
‭11)‬‭The publication of third-party books on NFS administration [e.g.‬‭Stern91‬‭].‬
‭12)‬‭The publication of the X/Open specification [‬‭X/Open91‬‭] which for the first time‬

‭described the semantics of using UNIX over NFS.‬

‭So were the naysayers wrong? In principle, no, but in practice they seem to have focussed‬
‭on the possible rather than the probable, which is often misleading. Take, for instance, the‬
‭interminable debate about the merits of a "stateless" design, and the desirable behavior of a‬
‭system when a server failure occurs. (This debate resurfaced recently on‬
‭comp.protocols.nfs‬‭.) Several critics have analyzed the behavior of the system when a file‬
‭server, or the network, fails in the middle of a sequence of NFS operations. In the worst‬
‭case, several clients are operating on a file or directory simultaneously. If the network is the‬
‭source of the problem, the "recent request" cache on the server will usually catch any‬
‭non-idempotent sequences, but if the server itself fails the cache is lost and cannot help.‬

‭Software, hardware, and administrative practices combine to ensure that NFS servers are‬
‭pretty reliable and stable these days. One piece of evidence for this is the recent demand for‬
‭a change to allow NFS clients to negotiate asynchronous writes on the server. The NFS‬
‭specification lays down as sacrosanct the principle that if a client issues a write request, the‬
‭server may not acknowledge the completion of the request until the changes are committed‬
‭to stable storage. (Normally "stable storage" refers to a disk, but these days it may be a‬
‭Legato PrestoServe board.) Some users now argue that NFS servers are so reliable that‬
‭they would prefer to abandon this dictum in order to get higher performance. At present,‬
‭some server vendors allow asynchronous write mode to be enabled on the server; since it is‬
‭clearly something that a client should be able to negotiate, it is suggested that a protocol‬
‭revision is needed.‬

‭Where statelessness really pays off is in a situation such as that in a typical workgroup.‬
‭Using the automounter, one mounts a shared read-mostly file system on which commonly‬
‭used software is stored, and starts Open Windows, which involves executing binaries from‬
‭this file system, and performs desktop operations which involve paging in code and data‬
‭from open files on the server. Even if the file server is taken down overnight for routine‬
‭service, everything will still be running next morning. With a stateful file system such as RFS,‬
‭LAN Manager®, or NetWare®, rebooting the file server for any reason will cause all files‬
‭which clients have opened to be closed.‬

‭6. Lessons.‬

‭What have we learned from the history of NFS so far? We all knew that a protocol revision‬
‭was necessary, and there was broad consensus as to what changes were required. The‬



‭classical standards committee politicking did not apply: in fact the NFS licensees explicitly‬
‭rejected the idea of creating a neutral body to own and maintain the NFS specification and‬
‭have always looked to Sun to continue to own and drive it. Why then did we fail to complete‬
‭a revision? And does it matter?‬

‭A number of factors seem to have come into play here:‬

‭1) "The change to end all change"‬

‭Talk to those involved in the process of NFS revision, and you will be struck by a classical‬
‭catch-22 which goes something like this. A change is proposed. The merits of this and other‬
‭changes are debated, and weighed against the costs of implementing the change. Pretty‬
‭soon, people notice that the process of coming to closure on the protocol revision is taking a‬
‭long time and causing considerable stress. Wishing to avoid future delays and stress, they‬
‭decide that this revision should be as complete as possible. In fact, some may label the‬
‭proposed revision "the change to end all change". Faced with this threat, it becomes more‬
‭important to "get it right", which necessitates more debate. But (catch-22) the longer this‬
‭goes on, the more changes people want to introduce (due to experience and changed‬
‭circumstances) and the more difficult it is to come to closure. In the limit, this can completely‬
‭paralyze any change.‬

‭2) The installed base as a competitive advantage.‬

‭This factor clearly came into play during the OSF DCE evaluation. If the installed base of‬
‭your existing technology is perceived as a major advantage in competition with other untried‬
‭technologies, why propose a new version of your technology which has NO installed base?‬

‭3) The protocol as Holy Grail.‬

‭An interesting phenomenon which we observed during the so-called "merge" between NFS‬
‭and TOPS was the excessive importance which people attached to making a particular‬
‭feature part of the NFS protocol, rather than part of the service. There seem to have been‬
‭three forces at work here: a conviction that placing a particular service in an adjunct protocol‬
‭would somehow marginalize it and leave it vulnerable to being made optional; a lack of‬
‭appreciation of the ONC architecture in which RPC services are seen as relatively cheap‬
‭and modular; and an almost mystical need to leave one's mark on the NFS protocol itself.‬

‭4) The protocol tweak.‬

‭One probably inevitable result of the delay in getting a protocol revision out was that people‬
‭introduced changes within the protocol without formal revision. The most obvious example is‬
‭the hack whereby a client can ask the server to set the access and modify times on a file to‬
‭the server's local time. The hack involves setting the microseconds field of the mtime‬
‭timestamp to 1000000 — obviously an illegal value, but one which "should not introduce‬
‭problems with unmodified servers."‬

‭5) The trade-off between complexity and interoperability.‬



‭Consider a new feature such as support for arbitrarily complex keyword-value attributes for‬
‭files. Is this feature to be mandatory or optional? If mandatory, many implementors may be‬
‭unable or unwilling to support the new protocol. (E.g. How does the change interact with file‬
‭backup/restore, what are the implications for the lifetimes and semantics of file handles, etc.)‬
‭If optional, how does a client implementor make use of the feature without having to provide‬
‭alternative code to handle the case where a server does not support the feature? If many‬
‭servers do not support it, is the client implementor better off avoiding its use altogether in the‬
‭interests of consistency (not to mention code size)? Or should a client require the availability‬
‭of the option, thereby imperilling interoperability?‬

‭6) "The good is the enemy of the best"‬

‭In the absence of major, catastrophic deficiencies, there is inevitably a trade-off between‬
‭improving an existing implementation and developing its successor. If many of the systems‬
‭with which you expect to interoperate will not adopt the new, surely improvement of the old is‬
‭a better investment. This, of course, can become a self-fulfilling prophecy. It also interacts‬
‭with the previous point: the more complete, advanced, and complex the new version is, the‬
‭less likely it is that other implementors will buy into it.‬

‭7. NFS today... and tomorrow.‬

‭Measured by usage, NFS is a tremendous success today. There is no real competition for‬
‭UNIX or heterogeneous file sharing. Measured by technical, academic, and marketing‬
‭activity, however, NFS is in the doldrums. It is taken for granted, which means that people‬
‭only notice it when something doesn't work as they expect.‬

‭In large measure, the success of NFS has been due to its simplicity. It does the job,‬
‭interoperability is well established, and the technical community understands it. Yet because‬
‭it is perceived that development has come to a halt, people are naturally looking elsewhere‬
‭for the next generation of technology.‬

‭The primary competitor for NFS is perceived to be the Andrew File System, AFS® AFS is‬
‭not new technology. It was developed in parallel with NFS, and sought to differentiate itself‬
‭from NFS by addressing a specific, technically sophisticated market: the organization with‬
‭thousands of systems spread over a number of sites. It has been suggested that the number‬
‭of customers that could truly exploit this capability in all its glory is vanishingly small... The‬
‭current attention being paid to AFS is largely a result of its association with the OSF‬
‭Distributed Computing Environment (DCE) platform.‬

‭The fact is that for the vast majority of NFS customers, AFS offers them only one real‬
‭benefit: it fixes a couple of minor but annoying bugs in NFS. Not major areas of functionality,‬
‭like access control lists, but technically trivial things, like supporting file sizes larger than 32‬
‭bits. The persistent client cache is an attractive feature, but it is essentially an operating‬
‭system storage management capability rather than a distributed file system scheme: such a‬
‭technique can be implemented using NFS as the file transport, as has been demonstrated in‬
‭the "Spritely NFS" research.‬



‭What kind of protocol revision would be necessary to allow it to continue in its position as the‬
‭standard? First, it should concentrate on eliminating deficiencies which are perceived as‬
‭disqualifying NFS in competition with AFS. The revision should be simple: the full protocol‬
‭must be implementable on all systems which run NFS today, and should not require major‬
‭perturbations to the host operating system or investment in significant adjunct technologies,‬
‭such as attribute data bases. Where possible, protocol elements (and thus code) should be‬
‭sharable between version 2 and version 3 of the protocol, so that server implementors will‬
‭not encounter problems in supporting both versions at the same time.‬

‭In conjunction with a protocol revision, the NFS community needs a much better‬
‭specification of how the protocol should be implemented and used. A framework for this now‬
‭exists in the form of the recently-published X/Open XNFS Specification [‬‭X/Open91‬‭], and it is‬
‭important that any protocol revision should be followed with the publication of a new edition‬
‭of this volume as quickly as possible.‬

‭Finally I would suggest that it is premature to write off the NeFS approach. Networking‬
‭bandwidth is not keeping pace with processor speeds, and eventually we will need to be‬
‭able to "chunk" higher-level operations remotely. (A similar argument suggests that over time‬
‭extensible procedural graphical models such as NeWS and Display PostScript will win out‬
‭over X-style bitmaps.) The most sensible approach would seem to be a collaboration with an‬
‭academic group to pursue NeFS as a research vehicle.‬

‭Acknowledgements‬

‭I'd like to thank everyone in the NFS and PC-NFS groups (now part of SunSoft and Sun‬
‭Technologies, Inc. respectively— some things‬‭do‬‭change) for their comments and help.‬
‭Brent Callaghan's long memory and cache of yellowing memoranda were invaluable.‬
‭Obviously none of this would have happened without the efforts of Bill Joy, Bob Lyon, Rusty‬
‭Sandberg et al back in 1984. (Who'd have thought it?!)‬

‭References:‬

‭[‬‭Callaghan89‬‭]‬
‭Brent Callaghan and Tom Lyon. The Automounter. In‬‭Proc. Winter 1989 USENIX‬
‭Conference‬‭, San Diego, CA, 1989.‬

‭[‬‭Gosling89‬‭]‬
‭James Gosling, David Rosenthal, and Michelle Arden.‬‭The NeWS Book‬‭. Springer-Verlag,‬
‭New York, NY, 1989.‬

‭[‬‭Hendricks88‬‭]‬
‭Dave Hendricks. The Translucent File Service. In‬‭Proc. European Unix User Group‬‭, 1988.‬



‭[‬‭Hendricks90‬‭]‬
‭Dave Hendricks. A Filesystem for Software Development. In‬‭Proc. Summer 1990 USENIX‬
‭Conference‬‭, Anaheim, CA, 1990.‬

‭[‬‭Juszczak89‬‭]‬
‭Chet Juszczak. Improving the Performance and Correctness of an NFS Server. In‬‭Proc.‬
‭Winter 1989 USENIX Conference‬‭, pages 53-63, San Diego, CA, 1989.‬

‭[‬‭Macklem90‬‭]‬
‭Rick Macklem. Lessons Learned Tuning the 4.3BSD Reno Implementation of the NFS‬
‭Protocol.‬

‭[‬‭Nowicki89‬‭]‬
‭Bill Nowicki. Transport Issues in the Network File System. In‬‭Computer Communication‬
‭Review‬‭, pages 16-20, March 1989.‬

‭[‬‭Reid90‬‭]‬
‭Jim Reid. N(e)FS: the Protocol is the Problem. In‬‭Proc. Summer 1990 UKUUG Conference‬‭,‬
‭London, England, July 1990.‬

‭[‬‭RFC1094‬‭]‬
‭Sun Microsystems Inc.‬‭NFS: Network File System Protocol Specification‬‭, ARPANET‬
‭Working Group Requests For Comments, DDN Network Information Center, SRI‬
‭International, Menlo Park, CA, March 1989, RFC-1094.‬

‭[‬‭Sandberg85‬‭]‬
‭Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and‬
‭Implementation of the Sun Network File System. In‬‭Proc. Summer 1985 USENIX‬
‭Conference‬‭, pages 119-130, Portland, OR, June 1985‬

‭[‬‭Sandberg86‬‭]‬
‭Russel Sandberg.‬‭The Sun Network Filesystem: Design, Implementation and Experience‬‭.‬
‭Sun Microsystems White Paper.‬

‭[‬‭Sandberg87‬‭]‬
‭Russel Sandberg.‬‭Sun Network Filesystem Protocol Specification Version 3‬‭. Sun‬
‭Microsystems, Inc. January, 1987.‬

‭[‬‭Stern91‬‭]‬
‭Hal Stern.‬‭Managing NFS and NIS‬‭. O'Reilly & Associates, Sebastopol, CA, June 1991.‬

‭[‬‭Taylor86‬‭]‬
‭Bradley Taylor and David Goldberg. Secure Networking in the Sun Environment. In‬‭Proc.‬
‭Summer 1986 USENIX Conference‬‭, 1986.‬

‭[‬‭X/Open90‬‭]‬



‭X/Open Company.‬‭Developers' Specification: Protocols for X/Open PC Interworking:‬
‭(PC)NFS‬‭. X/Open Company Limited, Reading, England, 1990.‬

‭[‬‭X/Open91‬‭]‬
‭X/Open Company.‬‭CAE Specification: Protocols for X/Open Interworking: XNFS‬‭. X/Open‬
‭Company Limited, Reading, England, 1991‬


