ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2427007
The Automounter

Conference Paper - January 1989

Source: CiteSeer

CITATIONS READS
10 24

2 authors, including:

Tom Lyon
Princeton University

18 PUBLICATIONS 721 CITATIONS

SEE PROFILE

All content following this page was uploaded by Tom Lyon on 22 May 2025.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2427007_The_Automounter?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2427007_The_Automounter?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Princeton_University?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-1fd8ee36efa26ea22487eabffeed17b6-XXX&enrichSource=Y292ZXJQYWdlOzI0MjcwMDc7QVM6MTE0MzEyODE0NTE1ODEzMDBAMTc0Nzg5MzEwOTQyMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

USENIX — Winter "89

The Automounter
Brent Callaghan

Tom Lyon

Sun Microsystems, Inc.
2550 Garcia Avenue.
Mountain View, Ca. 94043

ABSTRACT

This paper describes the automounter — an automatic filesystem mounting service dis-
tributed with Sun Microsystems version of the Unix® operating system (SunOs).
The automounter detects access to remote filesystems and mounts them on demand.
This action is transparent to users and programs. Automounted filesystems are auto-
matically unmounted after a period of inactivity. The map files that control the au-
tomounter can specify multiple locations for filesystems replicated across a network
and can describe mount hicrarchies. Automount maps can be administered on a single
machine through local files or across a Yellow Pages domain.

1. Introduction

The automounter was originally developed as a component of Sun’s Network Software Environment
(NSE™) [1]. An important requirement was for seamless access to files whether they be on a local
disk or on a remote server. A file anywhere on the network could be accessed with a Unix pathname,
leaving the automounter the task of locating the file and mounting the filesystem containing it. The
utility of the automounter was not confined to the NSE — it was quickly found to be a useful service
in a general Unix environment, particularly in a large network where it was neither practical nor de-
sirable to mount every exported filesystem from every server. The automounter is now a service
available in SunOs version 4.0. As a user-level server for Sun Microsystem’s Network File System

(NFS™) [2], the automounter does not require any explicit support from the Unix kernel. It can be
compiled and run on any version of Unix that supports the NFS protocol.

2. The Automount Server

The automount server is a daemon that provides NFS service at one or more mount points in the file-
system. The Unix kemnel uses remote procedure calls to communicate with the daemon, just as it
would for a remote NFS server. At any of its mount points, the daemon can intercept a request to ac-
cess a remote filesystem, mount it if it’s not already mounted, and return a symbolic link to the
mount point.

As a simple example, consider /src as an automounter mount point that provides access to source
trees. Upon a reference to /src/bsd the kemel would send an NFS lookup request to the automounter
for the pathname component bsd. The automounter would lookup src in a source tree map, find the
location of the corresponding source tree server:/directory, create a mount point in its /tmp_mnt di-
rectory, and mount the source tree. To the original lookup request in /src, the response would be a
symbolic link to the mount point in /tmp _mnt. The program that made the reference to /src/bsd
would have no way of knowing that the symbolic link did not exist prior to the lookup and that the
source tree was not previously mounted.

2.1. Automount Behavior

The automounter needs to support only a small subset of the NFS protocol. The required subset de-
pends on whether the automounter is emulating a symbolic link or a directory of symbolic links
(Figure 1 overleaf). In particular, the automounter does not need to support read or write requests.
It exists only to provide a name binding and mounting service. An Automounted file system is
mounted within the /tmp_mnt directory. The automounter merely creates a symbolic link to a mount
point within /tmp_mnt and hands it back to the kemnel in response to a readlink request. From then
on the kernel accesses the file system through the actual server.

-43-

USENIX — Winter “89

At startup the automounter opens a UDP socket and registers it with the portmapper service as an
NFS server port. It then forks off a scrver dacmon that listens for NFS requests on the socket. The
parent process proceeds to mount the daemon at its mount points within the filesystem. Through the
mount system call it passes the server daecmon’s socket address and an NFS filehandle that is unique to
each mount point. The daemon uses the filehandle to identify the mount point that is the source of
subsequent requests from the client (kernel). Once the parent program has completed its mounts, it
exits. The server daemon serves its mount points using one of two emulations at each mount point:
symbolic link and directory of symbolic links.

2.2. Emulations

Symbolic Link

This emulation uses an entry in a direct map. In a direct map each entry has a pathname for an auto-
mount mount point, a remote filesystem location and mount options that correspond to this mount
point. The automounter responds as if there is a symbolic link at its mount point. In response to a
getattr request the automounter describes itself as a symbolic link. When the kernel follows with a
readlink the automounter returns a path to the real mount point for the remote filesystem in
/tmp_mnt.

Directory of Symbolic Links

This emulation uses an indirect map. In response to a getattr request, the automounter describes it-
self as a directory. When given a lookup request it takes the name to be looked up and searches the in-
direct map. If it finds the name in the map, it returns the attributes of a symbolic link. In response
to a readlink it returns a path to the mount point in /tmp_mnt for this directory entry. A readdir of
the automounter’s mount point returns a list of entries that are currently mounted.

Automounter
as a

symbolic link /tmp_mnt

i real mount
il b 1
symbolic
link
as a
o /tmp_mnt
symbolic links
m|m||m||u|l|||||i§||||||.-
' real mount
:!"Illh. ® pOints
symbolic
links
Figul-e 1

USENIX — Winter 89

As an NFS server, the automounter sees only one component of a path to a remote filesystem through
its mount point. Since it has no way of knowing in advance which exported filesystem will be access-
ed on the server, it must mount all the server’s exported file systems. This may dismay casual users
who notice that a reference to single filesystem through the —hosts map also mounts many unwanted
filesystems. In practice this is not too much of a problem. A dozen mounts can be done in just a
few seconds. The —hosts map is particularly useful for casual browsing of servers around a network.
A specialized map should be created if frequent access to a specific file system is required.

The —passwd map was included to provide easy access to user’s home directories around the network.
It works only for a specific format of home directory path that includes the hostname of the server
that exports the home directory. At Sun we use the format "/home/server/loginname". Given the lo-
gin name of a user, the automounter makes a call to getpwnam() to get the user’s home directory
path. It uses the server name in the middle component of the path to build an internal map entry:

loginname -ro,nosuid server:/home/server:loginname

As an additional feature, given a lookup of the tilde "~" character, the user’s uid is extracted from
the credentials passed with the NFS request and the home directory path is obtained with a call to get-
pwuid(). A symbolic link containing a reference to a mount point for the —passwd map and a tilde as
the next component would point back into the user’s own home directory. This could be used as part
of a scheme to move mail files from /usr/spool/mail into users’ home directories.

4. Administration

The automounter, its mount points, and maps can be administered on a single host through the use of
regular files or across a whole Yellow Pages domain with YP maps. Every client that hosts an auto-
mounter must have an entry in its /etc/rc.local file to start the automounter at boot time.

4.1. Local Administration

We have used the convention of putting maps that are files in /etc and use a prefix of "auto." on the
map name. In the absence of the Yellow Pages the —hosts and —passwd built-in maps would continue
to work but only for entries in the /etc/hosts and /etc/passwd files.

A file map entry can be a reference to a YP map. If in the course of scanning a local map for key, the
automounter finds a key with a prepended plus "+" sign, it treats the key as the name of a YP map to
be consulted. This feature may be used to interpose map entries that are specific to the host before
the YP map is consulted.

bsd4.2 berk:/usr/src:bsd4.2
bsd4.3 berk:/usr/src:bsd4.3
+auto.src

* &:/usr/src

The map above provides access to various source trees. If the key is not bsd4.2 or bsd4.3 the YP
map auto.src is consulted for the key. If it’s not found there either it is caught by the "catchall"
entry which assumes that the key is a server name and attempts to mount /usr/src from that serv-
er.

4.2. Yellow Pages Administration

Given a map name, the automounter first checks for a local file. If it’s not a file it assumes that the
name refers to a Yellow Pages map. The Yellow Pages service is not required by the automounter,
but when it’s available it can be used to administer the mount points for clients across an entire YP
domain. Changes in the locations of file systems in a network need to be reflected only in the appro-
priate YP maps. The changes will be effected transparently on the clients who need not be aware of
changes in mount location, mount options or the addition of new map entries.

A local map file can be converted to a Yellow Pages map by the YP administrator. A "catchall" en-

try will continue to work in a YP map. If a lookup for a key in a YP map fails, the automounter
tries again using a "*" key and uses the catchall entry if one exists in the map.

- 49 -

USENIX — Winter “89

4.3. Auto.master

At startup, the automounter checks for the presence of a YP map called auto.master. The syntax here
is not that of the direct or indirect maps. Each entry contains a mount point, a map name, and option-
al default mount options for the map.

Mount point Map Mount options
/- auto.direct -ro,intr

/home auto.home -rw, intr, secure
/net -hosts

Changes made to this map by the YP administrator will affect every client in the YP domain that us-
es the automounter. Since auto.master is read only when the automounter is started up, any changes
made to the map will not be effective until the automounter is restarted. A client is not forced to
use the auto.master map either in whole or in part. Additional mount points and maps can be speci-
fied by an individual client either on the command line or in a file. A client can cancel a mount point
in auto.master with a —null map on the command line. The entire auto.master can be disregarded by
setting the —m flag on the command line.

A system administrator can exercisc a great degree of control over the NFS mounts of each client.
File systems can be added and moved about the network without the knowledge of the clients. Only
the YP maps that control their automounters need to be updated.

5. Future Work

The current implementation requires a response to be sent in reply to an NFS request before the next
request can be serviced. For most RPC services this doesn’t present too much of a performance prob-
lem if requests can be serviced quickly. The automounter can respond quickly to NFS requests that
reference cached symbolic links but it can be subject to substantial delays if a request requires a
mount from a server that is slow or is not responding. Not only will the current request be delayed,
but all requests will be delayed until the automounter responds. This unevenness of response time
could become intolerable on a large multi-user machine with a single automounter daemon. The prob-
lem could be somewhat alleviated by forking off a separate daemon to serve each mount point at the
cost of increasing memory usage. A solution we would like to pursue is to make the automount dae-
mon support multiple threads of execution according to a Lightweight Process model[4]. This would
allow the automounter to handle a number of NFS requests concurrently.

The locations in an automount map currently use hard-coded server and exported filesystem names.
We would like to allow a filesystem location to be given as a name that could be mapped to a loca-
tion (server:/dir) by a name binding service. This facility would allow individual servers in a net-
work to "advertise" their exported filesystems.

The -hosts map permits easy access to all the exported filesystems from a server. This is commonly
misunderstood to mean "access to the mounted filesystems of any host". This map cannot be used to
browse the mounted filesystems of a diskless machine. We would like to extend the mount protocol
to allow the automounter to find out what filesystems a host has mounted and allow it to reproduce
those mounts. This facility would greatly improve the network transparency offered by the -hosts
map.

The mount points served by the automounter are fixed at startup. The only way to add new mount
points is to terminate the automount daemon with a kill command and start it up again. We would
prefer to be able to offer uninterrupted automount service while such a change is made. An alterna-
tive structure for the automounter, would be to split it into two commands: a command that simply
forks the server daemon with no mount points assigned, and a process invoked through the mount com-
mand that could mount the daemon at any given mount point and assign a map.

-50-

USENIX — Winter “89

6. Acknowledgments

The development of the automounter has been spurred and encouraged by many people within Sun.
Brad Taylor wrote the user-level NFS server skeleton on which the automounter was based. Bob Gil-
ligan, Bill Shannon, Bob Lyon, Danicl Steinberg, Carl Smith, John Pope, David DiGiacomo, Marty
Hess, and Dave Brownell all suffered early versions, described the bugs and provided many useful sug-
gestions.

REFERENCES

1] "Introduction to the NSE", Sun Microsystems, Inc. (1988)

[2] R. Sandberg et al, "Design and Implementation of the Sun Network Filesystem", USENIX
Conference Proceedings, Portland, Summer, 1985.

[3] P. Weiss, "Yellow Pages Protocol Specification”, Sun Microsystems, Inc. Technical Report,
1985.

[4] J. H. Kepecs, "Lightweight Processes for UNIX Implementation and Applications”, USENIX
Conference Proceedings, Portland, Summer, 1985

[5] David Hendricks, "The Translucent File Service", EUUG Conference, Portugal, 1988.

81 &

https://www.researchgate.net/publication/2427007

