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ABSTRACT 

The Newcastle connection is a software subsystem that can be added to each 
of a set of physically interconnected UNIX or UNIX look-alike systems, so 
as to construct a distributed system which is functionally indistinguish­
able at both the user and the program level from a conventional single-
processor UNIX system. The techniques used are applicable to a variety and 
multiplicity of both local and wide area networks, and enable all issues of 
inter-processor communication, network protocols, etc., to be hidden. A 
brief account is given of experience with such distributed systems, the 
first of which was constructed in 1982 using a set of PDP 11s running UNIX 
Version 7, and connected by a Cambridge Ring - since this date the Connec­
tion has been used to construct distributed systems based on various other 
computers and versions of UNIX, both at Newcastle and elsewhere. The final 
sections compare our scheme to various precursor schemes and discuss its 
potential relevance to other operating systems. 

U INTRODUCTION 

The Newcastle Connection is the name we have given to a software subsystem which 
enables a distributed system to be constructed out of a set of standard UNIX systems. 
Such distributed systems (which can use a variety and multiplicity of both local and wide 
area networks) are functionally indistinguishable, at both "shell1 command language level 
and at system call level, from a conventional centralised UNIX system [1], Thus all 
issues concerning network protocols, and inter-processor communication are completely hid­
den. Instead all the standard UNIX conventions, e.g. for protecting, naming and accessing 
files and devices, for inter-process communications, for input/output redirection, etc., 
are made applicable, without apparent change, to the distributed system as a whole. 

The Newcastle Connection can be installed without any modification to any existing 
source code, of either the UNIX operating system, or any user programs. The technique is 
therefore not specific to any particular implementation of UNIX, but instead is applicable 
to any UNIX look-alike system that claims, and achieves, compatibility with the original 
at the system call level. 

In subsequent sections we discuss the structure of such distributed systems, (which 
for the purposes of this paper we will term UNIX United systems), the internal design of 
the Newcastle Connection, the networking issues involved, some interesting extensions to 
the basic scheme, our operational experience with it to date, its relationship to prior 
work and its potential relevance to other operating systems. 

2. UNIX UNITED 

A UNIX United system is composed out of a (possibly large) set of inter-linked stan­
dard UNIX systems, each with its own storage and peripheral devices, accredited set of 
users, system administrator, etc. The naming structures (for files, devices, commands and 
directories) of each component UNIX system are joined together in UNIX United into a sin­
gle naming structure, in which each UNIX system is to all intents and purposes just a 

•UNIX is a Trademark of Bell Laboratories. 
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directory. Ignoring for the moment questions of accreditation and access control, the 
result is that each user, on each UNIX system, can read or write any file, use any device, 
execute any command, or inspect any directory, regardless of which system it belongs to. 
The simplest possible case of such a structure, incorporating just two UNIX systems, is 
shown below. 

(base) . 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

V -> unixl . unix2 . 
/ \ / \ 

/ \ / \ 
\ \ 

usr . usr . 
/ \ / \ 

/ \ \ 
N . 1 -> brian . brian . 

/ \ / \ 
/ \ / \ 

/ \ quicksort \ 
a b b 

Figure 1: A Simple UNIX United System 

With the root directory ( V ) positioned as shown, one could copy the file Na' into 
the corresponding directory on the other machine with the shell command 

cp /user/brian/a /. ./unix2/user/brian/a 

(For those unfamiliar with UNIX, the initial V symbol indicates that a path name starts 
at the root directory, and the *..' symbol is used to indicate the parent directory.) 

Making use of the current working directory C.') as shown, this command could be 
abbreviated to 

cp a /../unix2/user/brian/a 

If the user has set up the shell variable *U2' as follows 

U2=/../unix2/user/brian 

it could be called forth, using the convention, so as to permit the further abbrevia­
tion 

cp a $U2/a 

All the above commands are in fact conventional uses of the standard vshell' command 
interpreter, and would have exactly the same effect if the naming structure shown had been 
set up on a single machine, with *unix1' and >unix2' actually being conventional direc­
tories. 

All the various standard UNIX facilities (whether invoked via shell commands, or by 
system calls within user programs) concerned with the naming structure carry over 
unchanged in form and meaning to UNIX United, causing inter-machine communication to take 
place as necessary. It is therefore possible, for example, for a user to specify a direc­
tory on a remote machine as being his current working directory, to request execution of a 
program held in a file on a remote machine, to redirect input and/or output, to use files 
and peripheral devices on a remote machine, etc. Thus, using the same naming structure as 
before, the further commands 
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cd /../unix2/user/brian 

quicksort a > /../unix1/user/brian/b 

have the effect of applying the quicksort program on unix2 to the file xa' which had been 
copied across to it, and of sending the resulting sorted file back to file vb' on unixl. 
(The command line 

/../unix2/user/brian/quicksort /. ./unix2/user/br ian/a > b 

would have had the same effect, without changing the current working directory.) 

It is worth reiterating that these facilities are completely standard UNIX facili­
ties, and so can be used without conscious concern for the fact that several machines are 
involved, or any knowledge of what data flows when or between which machines, and of which 
processor actually executes any particular programs. (Programs are actaually executed by 
the processor in whose file store the program is held, and data is transferred between 
machines in response to normal UNIX read and write commands.) Moreover all standard UNIX 
facilities, even the system call used to reposition the root directory, are provided in 
UNIX United. 

In fact what we have done in UNIX United is take advantage of an important but 
unusual property that UNIX possesses: all file naming is context-relative, in the sense 
that one can only name files relative to either the current or the root directory, both of 
which can be re-positioned (but again only using context-relative names). There is thus no 
way of naming files relative to any absolute point, such as the base of the tree. This 
feature of UNIX is more commonly used to enable multiple UNIX file systems to be held 
within one machine, but it is equally useful for splitting up a file system over a number 
of machines. 

2.î_. User Accreditation and Access Control 

UNIX United allows each constituent UNIX system to have its own named set of users, 
user groups and user password file, its own system administrator (super-user), etc. Each 
constituent system has the responsibility for authenticating (by user identifier and pass­
word) any user who attempts to log in to that system. 

It is possible to unite UNIX systems in which the same user identifier has already 
been allocated (possibly to different people). Therefore when a request, say for file 
access, is made from system NA', of system *B', on behalf of user %u', the request arrives 
at % B ' as being from, in effect user *A/u* - a user identifier which would not be confused 
with a local user identifier %u'. It will be, in effect, this user identifier *A/u' which 
governs the uses by *u' of files, commands, etc., on machine XB'. 

Just as the system administrator for each machine has responsibility for allocating 
ordinary user identifiers, so he also has responsibility for maintaining a table of recog­
nised remote user identifiers, such as NA/u'. If the system administrator so wishes, 
rather than refuse all access, he can allow default authentication for unrecognised remote 
users, who might for example be given xguest' status - i.e. treated as if they had logged 
in as xguest', presumably a user with very limited access privileges. 

From an individual user's point of view therefore, though he might have needed to 
negotiate not just with one but with several system administrators for usage rights 
beforehand, access to the whole UNIX United system is via a single conventional log in. 
Subject to the rights given to him by the various system administrators, he will then be 
governed by, and able to make normal use of, the standard UNIX file protection control 
mechanisms in his accessing of the entire distributed file system. In particular there is 
no need for him to log in, or provide passwords, to any of the remote systems that his 
commands or programs happen to use. This approach therefore preserves the appearance of a 
totally unified system, without abrogating the rights and responsibilities of individual 
system administrators. 

At the other extreme, so to speak, it is possible to use the mechanisms we have pro­
vided to set up a UNIX United system in which there is, in effect, just a single system 
administrator, and a single set of accredited users. Then any user can sign on, in the 
same way, to any of the UNIX systems, and the system administrator can readily control, 
and perform system maintenance tasks relating to, the entire UNIX United system. 
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2.2. The Structure Tree 

The naming structure of the UNIX United system represents the way in which the com­
ponent UNIX system are inter-related, as regards naming issues. When a large number of 
systems are united, it will often be convenient to set up the overall naming tree so as to 
reflect relevant aspects of the environment in which the UNIX systems exist. For example, 
a UNIX United system set up within a university might have a naming structure which 
matches the departmental structure. 

U1. 
/ 

/ 

/ \ 
/ \ 

EE. 
/! 

/ ! 
I \ 
U2. 

\ 
\ 

U3. 
/ 

\ 
\ 

CS. 
/ \ 

/ \ 
U1. 
/!\ 
/ ! 

\ 
U2. 

/ \ 
/ 

Maths 

\ 

Figure 2: A University-wide System 

With the naming structure as shown, files in the system VU1' in the Computing Science 
Department could be named using the prefix V../../CS/U1 ' from within the Electrical 
Engineering Department's UNIX systems. 

Such a naming structure has to be one that can be agreed to by all the system 
administrators, and which does not require frequent major modification - such modification 
of the UNIX United naming structure can be as disruptive as a major modification of the 
structure inside a single UNIX system would be, due to the fact that stored path names 
(e.g. incorporated in files and programs) could be invalidated. 

The naming structure could, but does not necessarily, reflect the topology of the 
underlying communications network. It certainly is not intended to be changed in response 
to temporary breaks in communication paths, or of service from particular UNIX systems. 
(An analogy is to the international telephone directory - the UK country code (44) contin­
ues to exist whether or not the transatlantic telephone service is operational.) 

One final point: We have developed mechanisms which make it possible for UNIX systems 
to appear in the naming structure in positions subservient to other UNIX systems, though 
these are not yet incorporated in the version of the Connection which we make available to 
other organizations. For example, in the previous figure, CS might denote a UNIX system, 
not just an ordinary directory. We regard this as a very important generalisation, since 
it allows existing UNIX United systems to be combined together, just as if they were ordi­
nary UNIX systems. 

3. THE NEWCASTLE CONNECTION 

The UNIX United scheme whose external characteristics were described above is pro­
vided by means of communication links, and the incorporation of an additional layer of 
software - the Newcastle Connection - in each of the component UNIX systems. Conceptu­
ally, this layer of software sits on top of the resident UNIX kernel, i.e. between the 
UNIX kernel and the rest of the UNIX software (e.g. shell and the various command pro­
grams) and the user programs. In actual fact, one has a choice between keeping the Con­
nection completely separate from the kernel, or of installing it within the kernel. The 
former is the simpler means of installing the Connection, but involves the recompilation 
or relinking of existing user programs and non-resident UNIX software. The latter tech­
nique is a kernel-specific optimization that avoids the need for such recompiliation or 
relinking. This method of installation naturally requires more effort and experience, and 
is best undertaken after completing the simpler porting technique, but in practice has not 
proved overly difficult. For convenience, in what follows we will assume that the Connec­
tion has been installed as a software layer, separate from the kernel. 
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From above, the Connection layer is functionally indistinguishable from the kernel. 
From below, it appears to be a normal user process. Its role is to filter out system 
calls that have to be re-directed to another UNIX system, and to accept system calls that 
have been directed to it from other systems. Communication between the Connection layers 
on the various systems is based on the use of a remote procedure call protocol [2], and is 
shown schematically below: 

¡User programs, 
I non-resident 
¡UNIX software 

¡Newcastle Connection 

¡UNIX Kernel 

¡User programs, 
I non-resident 
¡UNIX software 

remote procedure 
< >¡Newcastle Connection 

calls ¡ 
¡UNIX Kernel 

UNIX1 UN1X2 

Figure 3: The Position of the Connection Layer 

In fact a slightly more detailed picture of the structure of the system would of course 
reveal that communications actually occur at hardware level, and that the kernel includes 
means for handling low level communications protocols. 

The Connection layer has to disguise from the processes above it the fact that some 
of their system calls are handled remotely (e.g. those concerned with accessing remote 
files). It similarly has to disguise from the kernel below it that the requests for the 
kernel's services, and the responses it provides, can be coming from and going to, remote 
processes. This has to be done without in any way changing the means by which system 
calls (apparently direct to the UNIX kernel) identify any real or abstract objects that 
are involved. 

The kernel in fact uses various different means of identification for the various 
different types of object. For example, open files (and devices) are identified by an 
integer (usually in the range 0 to 19), logged on users by what is effectively an index 
into the password file, etc. Such name spaces are of course inherently local. The Con­
nection layer therefore has to accept such an apparently local name and use mapping tables 
to determine whether the object really is local, or instead belongs to some other system 
(where it may well be known by some quite different local name). The various mapping 
tables will have been set up previously - for example when a file is opened - and for 
non-local objects will indicate how to communicate with the machine on which the object is 
located. The selection of actual communication paths is performed by the Connection 
layer, and completely hidden from the user and his programs. 

Such mapping does not however apply to the single most visible name space used by 
UNIX, i.e. the naming structure used at shell level, and at the program level in the 
xopen' and ^exec' system calls, for identifying files and commands, respectively. Rather, 
the Connection layer can be viewed as performing the role of glueing together the parts of 
this naming structure that are stored on different UNIX machines, to form what appears to 
be a single structure. Each component UNIX system stores, firstly, the section of the 
naming tree associated with the system's own files and devices. Secondly, each system 
also stores a copy of those parts of the overall naming structure that relate it to its 
"name neighbours". These are the other UNIX systems with which it is directly connected in 
naming terms (i.e. which can be reached via a traversal of the naming tree without passing 
through a node representing another UNIX system). 
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(base) . 
/ \ 

/ \ 
/ \ 

A B 
/ \ / \ 
/ \ / \ 

E F D C 
/ \ 
/ \ 

G H 

Figure 4(a): A UNIX United Name Space 

(base) . (base) . 
/ \ / \ 

/ \ / \ 
/ \ / \ 

A B A B B 
/ \ / \ \ 

/ \ / \ \ 
E F D C C 

/ \ 
/ \ 

G H 

UNIX-A UNIX-B UNIX-C 

Figure 4(b): Represention of the Name Space 

In Figure 4(a), if "directories" A, B and C are associated with separate UNIX sys­
tems, the parts of the tree representation stored in each system are as shown in Figure 
4(b), namely: 

UNIX-A: A,B,E,F,(base) 

UNIX-B: A, B, C.D, (base) 

UNIX-C: B.C.G.H 

It is assumed that shared parts of the naming tree are agreed to by the administra­
tors of each of the systems involved, and do not require frequent modification - a major 
modification of the UNIX United naming structure can be as disruptive as a major modifica­
tion of the naming structure inside a single UNIX system. This is because names stored in 
files or incorporated in programs (or even just known to users) may be invalidated. 
(Again one can draw a useful analogy to the telephone system. Changes to international and 
area codes would be highly disruptive, and are avoided as far as possible. For example, 
they are not changed merely because the underlying physical network has to be modified.) 

Within each UNIX system, the Connection uses the local fragment of the UNIX United 
naming tree to resolve file names. Names are interpreted as a route through the tree, 
each element specifying the next branch to be taken. If the name can be fully interpreted 
locally, only a local access is involved. If a leaf corresponding to a remote system is 
reached, then execution must be continued remotely by making a remote procedure call to 
the appropriate system. Such leaves are specially marked, and contain the network address 
of the appropriate remote station. This address is given to the RPC as routing informa­
tion. (In some cases a request may be passed on through a number of Connections before 
being satisfied.) 

As well as accessing files using a name, a UNIX program can Nopen' a file and 
thereafter access it using the file descriptor returned from the Nopen' system call. When 
a file is opened the Connection makes an entry in a per-process table indicating whether 
or not the file descriptor refers to a local or a remote file. The table also holds net­
work station addresses for remote file descriptors. Subsequent accesses using the 
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descriptor refer to this table using the information there to route remote accesses 
without further delay. 

The actual remote file access is carried out for the user by a file server process 
that runs in the remote machine. Each user has their own file server, and the initial 
allocation of these is carried out by a "spawner" process that runs continuously. This 
latter process is callable (using a standard name) by any external user, and, upon 
request, will spawn a file server (after carrying out some user/group mapping), returning 
its external name to the user that initiated the request. The user then communicates 
directly with this file server, which is capable of carrying out the full range of Unix 
system calls. The user/group mapping is carried out to ensure that the access rights of 
the file server are in accord with those allowed to the external user by the local system 
manager, and consists of converting external names into valid local names. Nevertheless, a 
file server is still an extension of the environment of a user on a remote machine, and 
any relevant changes in the environment seen by a user must be mirrored by it. The most 
important of these is that when a user process "forks" (that is, creates a duplicate of 
itself), all the remote file servers which it is connected with must also fork. This 
greatly simplifies the implementation of remote execution and signalling, as each user 
process only ever has to deal with a single remote file server. 

Communication with the "spawner" and the file servers always takes the form of a 
remote procedure call, the first parameter of all calls being a sequence number. This is 
used by the servers to detect retry attempts - if the received sequence number is the same 
as that of the last call, then it is a retry (the RPC scheme precludes calls being lost, 
so there is no need to check for continuity in the sequence). 

4. NETWORKING ISSUES 

As indicated above, all communication between machines in a UNIX United system is 
performed by means of the RPC protocol, using network addresses that have been obtained 
from the leaves of the local fragment of the naming tree. Ideally, all the machines will 
be directly connected together, i.e. will belong to the same network address space, so 
that any machine can make a remote procedure call directly on any other machine. This is 
immediately achieved by the use of a single physical network, such as an Ethernet, but 
could be also be achieved by some sort of inter-network transport service which hides the 
existence of multiple physical networks from the Connection. However the Connection is 
currently being extended to contain its own provisions for coping with multiple network 
address spaces, and for forwarding RPC calls across networks, for use in situations where 
such a transport service is not provided. 

Any actual implementation of the RPC protocol requires primitive operations for 
exchanging messages between processes on different machines. In order to shield the Con­
nection layer from the complexities of having to handle differing network interfaces (for 
reasons both of simplifying its design, and improving its portablity) we have recently 
defined a single interface, the UDS interface, which provides a uniform process-to-process 
datagram service [3]. This hides the actual protocols used over each local or wide area 
network, and provides instead a small set of simple primitives for sending and receiving 
(possibly large) datagrams, using a standardized network addressing scheme, based on a 
<host number, port number> pair. Exception reporting is also standardized, the assumption 
being that the implementation of the UDS interface contains, where necessary, sufficient 
fault tolerance measures for the Connection to be able to rely on a datagram being 
transmitted accurately, and in its entirety, unless an exception is reported, in which 
case the Connection can request a retry. (The fault tolerance measures taken by any par­
ticular implementation will depend on the assumptions that can be made about the inherent 
reliability of the actual network involved.) 

The UDS interface enables a datagram to be sent from, or received into, a set of 
non-contiguous buffers, and in effect places no further limit on the size of the datagram 
than that implied by the total size of the buffers. Each I/O driver implementing the 
interface for a given network therefore has the responsibility for performing any fragmen­
tation and reassembly operations made necessary by the limitations imposed by the underly­
ing communications hardware and software. This shields the rest of the Connection from 
such limitations, which in any case tend to be network-specific. The scatter/gather 
facilities provided to enable the use of non-contiguous buffers greatly reduce the amount 
of data copying involved in an RPC, and the ability to send large datagrams similarly 
reduces the number of I/O calls that have to be made across the user/kernel interface. 
Thus we have found that the introduction of the UDS interface in place of more 
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conventional network-specific datagram interfaces has not only simplified the tasks of the 
Connection, and the problems of porting it onto new hardware, but also given useful per­
formance benefits [4]. 

5. EXTENSIONS TO THE BASIC UNIX UNITED SCHEME 

We have found that the conceptual simplifications to the task of implementing a 
UNIX-based distributed computing system that the Newcastle Connection approach has pro­
vided have spurred us to produce a variety of extensions of, or variations on, the basic 
theme, some of which we have already started to implement. 

The Connection layer can be regarded as isolating and solving the problems associated 
just with distribution - and, it turns out, is applicable to the case of distributed sys­
tems made from components other than complete UNIX systems. For example, one could con­
nect together some systems which have little or no file storage with other systems that 
have a great deal - i.e. construct a UNIX United system out of workstations and file 
servers. Almost all that is necessary is to set up the naming tree properly. 

Moreover since the Connection layer can be independent of the internals of the UNIX 
kernel, it is not even necessary for the Connection layer to have a complete kernel under­
neath it - all that is needed is a kernel that can respond properly (even if only with 
exception messages) to the various sorts of system call that will penetrate down through, 
or are needed to support, the Connection layer. In fact the Connection layer itself can 
be economised on, if for example it is mounted on a workstation that serves as little more 
than a screen editor, say, and so has only a very limited variety of interactions with the 
rest of the UNIX United system. All that is necessary is adherence to the general format 
of the inter-machine system call protocol used by the Newcastle Connection, even if most 
types of call are responded to only by exception reports. 

Thus the syntax and semantics of this protocol assume a considerable significance, 
since it can be used as the unifying factor in a very general yet extremely simple scheme 
for putting together sophisticated distributed systems out of a variety of size and type 
of component - an analogy we like to make is that the protocol operates like the scheme of 
standard-size dimples that allow a variety of shapes of LEGO children's building blocks to 
be connected together into a coherent whole. 

In addition to the problem of distribution, we also have taken what are, we believe, 
several other equally separable problems, in particular those of (i) providing error 
recovery (for example in response to input errors or unmaskable hardware faults), (ii) 
using redundant hardware provided in the hope of masking hardware faults, (iii) the 
enforcement of multi-level security policies and (iv) load balancing between the component 
systems, and plan wherever practicable to embody their solutions in other separate layers 
of software. Indeed, three significant extensions of UNIX United have already been imple­
mented, albeit in prototype form. The first of these provides multi-level security, using 
encryption to enforce security barriers beween component machines (which each run at a 
single security level) and to control permissible security re-classifications [5]. The 
other two extensions are related to hardware fault tolerance. One uses file and process 
triplication and majority voting to mask hardware faults - application programs are 
unchanged, though in fact running in synchronisation on several machines with hidden vot­
ing. The other uses duplicated disks to provides a crash-resistant high integrity file 
system [6]. 

6. OPERATIONAL EXPERIENCE 
The first UNIX United system was based on a set of three PDP 11/23s and two aged 

PDP11/45s, all running UNIX V7, and connected by a Cambridge Ring. At the time of writing 
(August 1984) this system is being upgraded, with the 11/45s being replaced by VAX/750 
computers. The system has been operational for over two years, and usually in regular 
daily use. Our experience has been that the most heavily used facilities have been those 
concerned with file transfer and I/O redirection, for example in order to make use of the 
line printer and magnetic tape unit that are attached to one machine. The Connection has 
also been relied on for network mail, for solving the problems of overnight file-dumping 
(of all machines, onto the one tape unit) and, perhaps most significantly, for software 
maintenance and distribution within the UNIX United system 

A second and hitherto separate UNIX United system at Newcastle, based on ICL PERQs 
connected by Ethernet, was implemented during May 1983 in collaboration with ICL, and has 
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since also been used regularly. Work is now in hand to link this system to the VAX/750 
computers, and to several other recently acquired UNIX machines, from various manufactur­
ers, in order to produce one single enlarged and somewhat heterogeneous UNIX United sys­
tem, involving both a Ring and an Ethernet. 

Pre-release versions of our software were first made available to several other 
organisations, starting in mid-1982, the first formal release being issued in June 1983. 
By now a considerable number of organizations have taken out either commercial or educa­
tional licenses, and have ported the Connection to various other machines, networks and 
versions of UNIX, including System III and Berkeley 4.2. 

As regards the performance of a UNIX United system, it is clear that this depends on 
three essentially separate factors: the capabilities of the component UNIX systems, the 
efficiency of the underlying communications hardware and software, and the overheads due 
to the Connection, only the last of which is our responsibility. In fact the overheads 
due to the Connection are really quite modest. Those caused by the need to confirm that a 
system call only involves a local file descriptor are virtually imperceptible, though 
local path name calls such as ^open' and ^exec' are slowed down somewhat, since for each 
such call an additional *stat' system call is made from within the Connection. When a 
call proves to involve a remote facility, this normally just involves making one RPC call, 
and waiting for a reply. The RPC protocol is itself very simple and usually involves 
sending one message (the packaged system call) and receiving one message in reply. The 
file server that accepts such calls from remote machines is similarly simple, being dedi­
cated to serving the needs of just a single remote process, and in most cases does little 
more than make system calls on behalf of this process and send it the results. 

Our first UNIX United system functioned surprisingly well, despite the fact that the 
Cambridge Ring stations used were quite slow, being interrupt-driven rather than direct 
memory access devices. (Such stations cause UNIX to take an interrupt for every pair of 
bytes sent and received over the Ring!) In fact terminal users in general noticed little 
performance difference between local and remote accesses and execution. This perhaps 
indicates that even interrupt-driven stations are reasonably well matched to the rather 
modest performance that UNIX itself can achieve on a small PDP11/23 used as a personal 
workstation, or on a PDP11/45 that is usually being used by a number of demanding terminal 
jobs. 

A separate project has now been set up to undertake performance monitoring and 
evaluation of UNIX United systems, a task whose difficulty derives in part from the well-
know problems of making meaningful performance assessments and comparisons of ordinary 
UNIX systems. However some simple experimental measurements have already been made using 
our PERQ-based system, which has much more adequate network hardware, in fact an Ethernet 
with direct memory access interface units. These measurements produced the initially 
surprising result that copying of files to or from a remote PERQ could be 20% or more fas­
ter than local file copying. In fact this merely indicates the extent to which contention 
for a single disk can limit a machine's performance. One other interesting measurement 
showed that file transfers using the standard UNIX file copy command and the Connection 
achieved almost twice the speed achieved by the manufacturer-supplied file transfer proto­
col, which uses the ECMA Level 4 Transport Service over the Ethernet. However the more 
significant result is that, on this system also, users in general notice little difference 
in performance between local and remote operations. 

The total amount of code involved in the various parts of the Connection is about 
11,000 lines of C. Of this, the file server code amounts to approximately 2500 lines, the 
code involved in intercepting and mapping the various system calls some 7500 lines, and 
the xspawner' which is used to start up file server processes on demand the remaining 1000 
lines. Installation of the Connection as a separate layer involves including a copy of 
selected parts of the interception code in each user program. On the PDP 11/45, for exam­
ple, the amount of code added varies between 3.5k and 12k bytes, depending on the number 
of different system calls that the program invokes. (The alternative means of installing 
the Connection, discussed briefly in Section 3, involves inserting just the interception 
code in the kernel - the file server and spawner code remains outside the kernel.) 

On the PDP 11/45 the file server code occupies about 12.5k bytes, and in addition 
each actual server process requires 2.5k bytes of space. The single spawner process 
requires a total of 8k bytes of code and data space. (By way of comparison, the UNIX ker­
nel as set up for our particular I/O configuration occupies 48.5k bytes of code space, and 
83.5k bytes in total.) The comparatively small size of the Connection reflects the need we 
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had to make the system work on our small PDP 11/23s, which provided a strong incentive to 
find what we feel justified in claiming are simple well-structured solutions to the vari­
ous implementation problems. (In our view an overabundance of program storage space can 
have almost as bad an effect on the quality of a software system as does inadequate space 
- it is surely no coincidence that UNIX was first designed for quite modestly sized 
machines!) 

7. RELATED EARLIER WORK 

The Newcastle Connection, and the UNIX United scheme that it makes possible, have 
many precursors, and not just within the UNIX world. 

The idea of providing a layer of software which aims to shield users of a set of 
inter-connected computers from the need to concern themselves with networking protocols, 
or even the fact of there being several computers involved, is well-established. It is, 
for example, what the IBM CICS System [7] does for users of various transaction-processing 
programs, and what the National Software Works project [8] aimed to do for the users of 
various software development tools, running on a variety of different operating systems. 
Such layers of software are intended for somewhat specialised use, and run on top of 
specific sets of application programs. At the other end of the spectrum, such location-
or network-transparency is also one of the aims of the Accent kernel [9], on which operat­
ing systems can be constructed which use its "port" concept as a means of unifying inter­
process communication, inter-computer message passing, and operating system calls. 

The dawning realisation that the * shell' job control language and the program-level 
facilities (i.e. system calls) of the UNIX multiprogramming system could suffice, and 
indeed would be highly appropriate, to control a distributed computing system can be 
traced in a whole series of distributed UNIX projects. The global file naming technique 
used in the early Nuucp' facilities [10] for interconnecting UNIX systems via standard 
telephone circuits can be seen as a special, but rather ad hoc, extension of the indivi­
dual file system naming hierarchies, and had been copied by us in our Distributed Recover­
able File System [11]. (The technique provides what is in effect a set of named hierar­
chies, rather than a single enlarged hierarchy.) 

Rather better integrated with the standard UNIX file naming hierarchy are the facili­
ties provided in the Network UNIX System [12]. This modification of standard UNIX pro­
vides a series of Arpanet protocols, which are invoked by means of some additional system 
commands, using what appeqr to be ordinary file names as the means of identifying which 
Arpanet host is to be communicated with. (The paper describing this system also specu­
lates on the possibility of redesigning the shell interpreter so as to provide network 
transparency for commands and files at the shell command language level.) The Purdue 
Engineering Computer Network [13] is conceptually similar to the Network UNIX System, 
though based on hard-wired high speed duplex connections. It provides additional commands 
which invoke the services of special protocols for virtual terminal access and remote exe­
cution at the shell level, and also a means of load balancing through a scheduling program 
which takes responsibility for deciding which processor should execute certain selected 
commands. 

The distributed system of interconnected S-UNIX personal workstations and F-UNIX file 
servers [14] goes further by providing each workstation user with a ordinary UNIX inter­
face, without any additional non-standard commands, yet incorporating a distributed ver­
sion of the UNIX hierarchical file store containing just his own local files plus all the 
files held on the file servers. This system is one of several built at Bell Labs using 
the Datakit virtual circuit switch - others are RIDE [15] and D/UNIX [16]. The RIDE sys­
tem provides complete remote file access and remote program execution, but is based on a 
xuucp'-like, rather than standard, UNIX naming hierarchy - it is however implemented 
merely by adding a software layer on top of the UNIX kernel, an approach which is highly 
similar to that we have since used with our Newcastle Connection technique. D/UNIX is a 
distributed system based on modified versions of UNIX which provide virtual circuits 
between processes, and a transparent file sharing scheme covering all the files on all the 
component systems. 

A fully symmetrical means of linking computer systems together so as to give the 
appearance of a single UNIX-like hierarchical file store, and the standard shell command 
language, is also provided by the LOCUS system - the paper [17] describing this system 
also discusses its intended extension to provide remote program execution as well as 
remote file access. However, for all its external similarity to UNIX, the LOCUS system 
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involves a completely redesigned operating system rather than a modification of an exist­
ing UNIX system, albeit an operating system which is also designed to have extensive fault 
tolerance facilities. 

The penultimate stage in the evolution can be seen in the COCANET local network 
operating system [18], a system which has been built using the standard UNIX system, and 
which comes very close indeed to our aim of combining a set of standard UNIX systems into 
a single unified system, and which certainly supports network-transparent remote execution 
as well as file access. However the COCANET designers have allowed themselves to make a 
number of changes to the UNIX kernel and would appear, from the description they give, not 
to have coped fully with user-id mapping. It would also appear that COCANET is designed 
specifically around the idea of having a relatively small number of machines linked by a 
single high-speed ring, and hence has a rather restrictive structure tree, which is viewed 
slightly differently from each machine. However many of the mechanisms incorporated in 
UNIX United are very similar to those used in COCANET. 

It is thus but a comparatively small step from COCANET to UNIX United, and to the 
idea of the Connection layer capable of being placed on top of an unchanged UNIX kernel, 
replicating all its facilities exactly in a network-transparent fashion, and capable of 
making a distributed system involving large numbers of computers, connected by a variety 
of local and wide area networks. Incidentally, one can draw an interesting parallel 
between the Connection layer and what is sometimes called a "hypervisor", the best-known 
example of which is VM/370 [19]. Each is a self-contained layer of software, which makes 
no changes to the functional appearance of the system beneath it (the IBM/370 architecture 
in the case of VM/370, which fits under rather than on top of the operating system ker­
nel). However whereas a hypervisor's function is to make a single system act as a set of 
separate systems, the Newcastle Connection (a "hypovisor"?) makes a set of separate 
(though of course linked) systems act like a single system! 

However, to our embarrassment, we have to admit that the idea of the Connection 
layer, of the basic UNIX United scheme, and of most of the extensions of the scheme, did 
not arise from careful study and analysis of these precursors. (Indeed it is clear that 
what was presented above as a more-or-less orderly evolutionary development path often 
involved parallel activity by several groups, and much accidental re-invention.) In fact 
we were not consciously aware of any of these systems (other than Nuucp' and of course 
DRFS) whilst the work that led to the Newcastle Connection was in progress. Indeed, by 
the time we learnt of LOCUS and COCANET, all the basic ideas and strategies to be incor­
porated in the Newcastle Connection had been worked out, though not all in full detail, 
and much of the system was already operational and in daily use. Rather we can trace the 
origins of our scheme to the existence of the plans for our remote procedure call proto­
col, and the idea, which we now know has occurred to many groups independently, of extend­
ing the UNIX ^mount1 facility from that of mounting replaceable disk packs to that of 
mounting one UNIX system on another. 

This idea arose at Newcastle in early December 1981 - within a week or so much of the 
UNIX United concept had been thought up and even roughly documented. A hesitant start at 
what was initially intended as just an experimental and partial implementation was made 
after Christmas, but within a month many facilities related to accessing and operating on 
files remotely over the Cambridge Ring were in active use. Work proceeded rapidly, both 
on extending the range of UNIX kernel features that the Newcastle Connection mapped 
correctly, and on discovering, mainly via experimentation, some of the more arcane 
features of the kernel interface as implemented and used in V7 UNIX. At about this stage 
we found out about first the S-UNIX/F-UNIX and LOCUS systems, and shortly afterwards the 
COCANET and then the RIDE systems. These various papers were a considerable encouragement 
to us to continue our efforts, leading to a first complete system by mid-1982, and also 
provided us with a useful perspective on our approach. In particular they strengthened 
our growing belief in the viability of an alternative, UNIX-based, approach to distributed 
computing to that based on the use of a variety of explicit servers, each with its own 
specialised service protocol [20,21]. 

8. WHY JUST UNIX? 
It is interesting to analyse just what it is about UNIX, and the linguistic inter­

faces it provides at shell and system call level, that make it so suitable for use as the 
model and basis for a network operating system. There seem to be six principal factors 
involved. 
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First, there is the hierarchical file (and device and command) naming system. This 
makes it easy to combine systems, because the various hierarchical name spaces just become 
component name spaces in a larger hierarchy, without any problems due to name clashes. 
The standard UNIX mechanisms for file protection and controlled sharing of files then 
carry over directly, once the problem of possible clashes of user identifiers is handled 
properly. 

Second, there are the UNIX facilities for dynamically selecting the current working 
directory and root directory. In particular the ability to select the root directory -
normally thought of as one of the more exotic and little needed of the UNIX system com­
mands - seems to have been designed especially for UNIX United, since it provides a per­
fect w a y of hiding the extra levels of the directory tree that have to be introduced. 

Third, and obviously vital, is the fact that UNIX allows its users, and their pro­
grams, to initiate asynchronous processes. This is used inside the Newcastle Connection, 
and also provides the means whereby even a single user can make use via the Newcastle Con­
nection of several or indeed all of the computers that are involved in the UNIX United 
system. It also provides the means whereby slow file transfers (via low bandwidth wide 
area networks) can be relegated to background processing, and so still be organised using 
remote procedure calls. 

Fourth, there is the fact that the UNIX system call interface is (relatively) clean 
and simple, and can easily be regarded as providing a small number of reasonably well 
defined abstract types. The task of virtualising these types, so a s to give network tran­
sparency, therefore remains manageable. 

Fifth, there is the fact, even in this day and age still regrettably worthy of men­
tion, that the original UNIX system, and a l l of its derivatives known to us, are written 
in a fairly satisfactory high level language. Our method of incorporating the Newcastle 
Connection into UNIX as a separate software layer therefore merely involved recompiling 
relevant parts of the system, using a different subroutine library. 

Finally, there is the well-established set of exception reporting conventions that 
are used in UNIX, for example, to indicate the reasons why particular system call requests 
cannot be honoured. When such a call has, via the Newcastle Connection, involved 
attempted communication with another UNIX system there are various other (quite likely) 
reasons, but they can be mapped onto the exceptions that the caller is already supposed to 
be a b l e to deal with. 

However it is unlikely that the idea could not be carried across to at least some 
other systems. Indeed a report by Goldstein et al [22] implies that something similar is 
being bravely contemplated for IBM's MVS operating system, and some aspects of the idea 
are we understand commercially available as additions to the RSX/11 operating system - no 
doubt other examples exist. The one other system whose suitability for the Newcastle Con­
nection approach has been considered at a l l seriously by us is DEC's VAX/VMS system. It 
would appear that it has many of the necessary characteristics though there could be prob­
lems with the way that devices are involved with its system of file naming. 

This section would not be complete without any mention of what we regard as some 
shortcomings of the UNIX V 7 specifications ( a t system call level): Firstly, the system of 
"signals' for asynchronous communication between processes could be improved. Allied to 
this, a general synchronous inter-process communication mechanism would be useful, allow­
ing communication between numbers of unrelated processes. Some awkward features in the 
file protection scheme were encountered when constructing the file server. These were 
associated with the notions of rsuper-user* and veffective user-id'. Lastly, we found 
that the ability to have many directory entries C l i n k s ' ) , each naming t h e same physical 
file, w a s elegant in concept but severely limited in generality by the actual UNIX V 7 
implementation. (Unfortunately, the various "improved" versions of UNIX that have 
appeared since Version 7 have done little to remedy most of these shortcomings.) 

With respect to the programs that are provided with the UNIX system, very few diffi­
culties were encountered in connecting them, except, that is, for the Shell. This program 
makes use of system facilities in non-standard ways, and its internal design is obscure to 
say the least. However, it has proved to be a n excellent testbed for the system - when 
porting the Connection, once the Shell works you can be pretty sure that most other pro­
grams will! 
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9. CONCLUSIONS 

The first of our internal memoranda on what we later came to call the Newcastle Con­
nection described the idea as "so simple and obvious that it surely cannot be novel". 
And, as described above, it did turn out to have a number of precursors - in fact probably 
many more than we yet realise. However we take this as confirmation of the merits of the 
twin ideas of network transparency and of its provision by a single separate mapping 
layer, an approach whose ramifications we feel we have barely begun to explore. (A more 
general discussion of this approach, and its relevance to the problems of designing highly 
reliable and secure systems can be found in[23L) Certainly our present plan is to con­
tinue our programme of experimental implementations and applications, and to determine how 
well the Newcastle Connection (and UNIX) can withstand the weight of additional software 
layers containing the various reliability and security-related mechanisms that we have 
developed, hitherto in a rather fragmented fashion for various systems and languages. 

One other point is worth stressing. It has for some years been well-accepted that 
the structure and mechanisms of a multiprocessing operating system are very similar to 
those of a (good) multiprogramming system. What has now become clear to us, as a result 
of our work on UNIX United, is that this similarity can usefully extend also to distri­
buted systems. The additional problems and opportunities that face the designer of a 
homogeneous distributed system should not be allowed to obscure the continued relevance of 
much established practice regarding the design of multiprogramming systems. 
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