
- 74 -

THE NEWCASTLE CONNECTION:

a software subsystem for constructing distributed UNIX
systems

B. Randell

Computing Laboratory,
University of Newcastle upon Tyne

ABSTRACT

The Newcastle connection is a software subsystem that can be added to each
of a set of physically interconnected UNIX or UNIX look-alike systems, so
as to construct a distributed system which is functionally indistinguish­
able at both the user and the program level from a conventional single-
processor UNIX system. The techniques used are applicable to a variety and
multiplicity of both local and wide area networks, and enable all issues of
inter-processor communication, network protocols, etc., to be hidden. A
brief account is given of experience with such distributed systems, the
first of which was constructed in 1982 using a set of PDP 11s running UNIX
Version 7, and connected by a Cambridge Ring - since this date the Connec­
tion has been used to construct distributed systems based on various other
computers and versions of UNIX, both at Newcastle and elsewhere. The final
sections compare our scheme to various precursor schemes and discuss its
potential relevance to other operating systems.

U INTRODUCTION

The Newcastle Connection is the name we have given to a software subsystem which
enables a distributed system to be constructed out of a set of standard UNIX systems.
Such distributed systems (which can use a variety and multiplicity of both local and wide
area networks) are functionally indistinguishable, at both "shell1 command language level
and at system call level, from a conventional centralised UNIX system [1], Thus all
issues concerning network protocols, and inter-processor communication are completely hid­
den. Instead all the standard UNIX conventions, e.g. for protecting, naming and accessing
files and devices, for inter-process communications, for input/output redirection, etc.,
are made applicable, without apparent change, to the distributed system as a whole.

The Newcastle Connection can be installed without any modification to any existing
source code, of either the UNIX operating system, or any user programs. The technique is
therefore not specific to any particular implementation of UNIX, but instead is applicable
to any UNIX look-alike system that claims, and achieves, compatibility with the original
at the system call level.

In subsequent sections we discuss the structure of such distributed systems, (which
for the purposes of this paper we will term UNIX United systems), the internal design of
the Newcastle Connection, the networking issues involved, some interesting extensions to
the basic scheme, our operational experience with it to date, its relationship to prior
work and its potential relevance to other operating systems.

2. UNIX UNITED

A UNIX United system is composed out of a (possibly large) set of inter-linked stan­
dard UNIX systems, each with its own storage and peripheral devices, accredited set of
users, system administrator, etc. The naming structures (for files, devices, commands and
directories) of each component UNIX system are joined together in UNIX United into a sin­
gle naming structure, in which each UNIX system is to all intents and purposes just a

•UNIX is a Trademark of Bell Laboratories.

- 75 -

directory. Ignoring for the moment questions of accreditation and access control, the
result is that each user, on each UNIX system, can read or write any file, use any device,
execute any command, or inspect any directory, regardless of which system it belongs to.
The simplest possible case of such a structure, incorporating just two UNIX systems, is
shown below.

(base) .
/ \

/ \
/ \

/ \
/ \

V -> unixl . unix2 .
/ \ / \

/ \ / \
\ \

usr . usr .
/ \ / \

/ \ \
N . 1 -> brian . brian .

/ \ / \
/ \ / \

/ \ quicksort \
a b b

Figure 1: A Simple UNIX United System

With the root directory (V) positioned as shown, one could copy the file Na' into
the corresponding directory on the other machine with the shell command

cp /user/brian/a /. ./unix2/user/brian/a

(For those unfamiliar with UNIX, the initial V symbol indicates that a path name starts
at the root directory, and the *..' symbol is used to indicate the parent directory.)

Making use of the current working directory C.') as shown, this command could be
abbreviated to

cp a /../unix2/user/brian/a

If the user has set up the shell variable *U2' as follows

U2=/../unix2/user/brian

it could be called forth, using the convention, so as to permit the further abbrevia­
tion

cp a $U2/a

All the above commands are in fact conventional uses of the standard vshell' command
interpreter, and would have exactly the same effect if the naming structure shown had been
set up on a single machine, with *unix1' and >unix2' actually being conventional direc­
tories.

All the various standard UNIX facilities (whether invoked via shell commands, or by
system calls within user programs) concerned with the naming structure carry over
unchanged in form and meaning to UNIX United, causing inter-machine communication to take
place as necessary. It is therefore possible, for example, for a user to specify a direc­
tory on a remote machine as being his current working directory, to request execution of a
program held in a file on a remote machine, to redirect input and/or output, to use files
and peripheral devices on a remote machine, etc. Thus, using the same naming structure as
before, the further commands

- 76 -

cd /../unix2/user/brian

quicksort a > /../unix1/user/brian/b

have the effect of applying the quicksort program on unix2 to the file xa' which had been
copied across to it, and of sending the resulting sorted file back to file vb' on unixl.
(The command line

/../unix2/user/brian/quicksort /. ./unix2/user/br ian/a > b

would have had the same effect, without changing the current working directory.)

It is worth reiterating that these facilities are completely standard UNIX facili­
ties, and so can be used without conscious concern for the fact that several machines are
involved, or any knowledge of what data flows when or between which machines, and of which
processor actually executes any particular programs. (Programs are actaually executed by
the processor in whose file store the program is held, and data is transferred between
machines in response to normal UNIX read and write commands.) Moreover all standard UNIX
facilities, even the system call used to reposition the root directory, are provided in
UNIX United.

In fact what we have done in UNIX United is take advantage of an important but
unusual property that UNIX possesses: all file naming is context-relative, in the sense
that one can only name files relative to either the current or the root directory, both of
which can be re-positioned (but again only using context-relative names). There is thus no
way of naming files relative to any absolute point, such as the base of the tree. This
feature of UNIX is more commonly used to enable multiple UNIX file systems to be held
within one machine, but it is equally useful for splitting up a file system over a number
of machines.

2.î_. User Accreditation and Access Control

UNIX United allows each constituent UNIX system to have its own named set of users,
user groups and user password file, its own system administrator (super-user), etc. Each
constituent system has the responsibility for authenticating (by user identifier and pass­
word) any user who attempts to log in to that system.

It is possible to unite UNIX systems in which the same user identifier has already
been allocated (possibly to different people). Therefore when a request, say for file
access, is made from system NA', of system *B', on behalf of user %u', the request arrives
at % B ' as being from, in effect user *A/u* - a user identifier which would not be confused
with a local user identifier %u'. It will be, in effect, this user identifier *A/u' which
governs the uses by *u' of files, commands, etc., on machine XB'.

Just as the system administrator for each machine has responsibility for allocating
ordinary user identifiers, so he also has responsibility for maintaining a table of recog­
nised remote user identifiers, such as NA/u'. If the system administrator so wishes,
rather than refuse all access, he can allow default authentication for unrecognised remote
users, who might for example be given xguest' status - i.e. treated as if they had logged
in as xguest', presumably a user with very limited access privileges.

From an individual user's point of view therefore, though he might have needed to
negotiate not just with one but with several system administrators for usage rights
beforehand, access to the whole UNIX United system is via a single conventional log in.
Subject to the rights given to him by the various system administrators, he will then be
governed by, and able to make normal use of, the standard UNIX file protection control
mechanisms in his accessing of the entire distributed file system. In particular there is
no need for him to log in, or provide passwords, to any of the remote systems that his
commands or programs happen to use. This approach therefore preserves the appearance of a
totally unified system, without abrogating the rights and responsibilities of individual
system administrators.

At the other extreme, so to speak, it is possible to use the mechanisms we have pro­
vided to set up a UNIX United system in which there is, in effect, just a single system
administrator, and a single set of accredited users. Then any user can sign on, in the
same way, to any of the UNIX systems, and the system administrator can readily control,
and perform system maintenance tasks relating to, the entire UNIX United system.

- 77 -

2.2. The Structure Tree

The naming structure of the UNIX United system represents the way in which the com­
ponent UNIX system are inter-related, as regards naming issues. When a large number of
systems are united, it will often be convenient to set up the overall naming tree so as to
reflect relevant aspects of the environment in which the UNIX systems exist. For example,
a UNIX United system set up within a university might have a naming structure which
matches the departmental structure.

U1.
/

/

/ \
/ \

EE.
/!

/ !
I \
U2.

\
\

U3.
/

\
\

CS.
/ \

/ \
U1.
/!\
/ !

\
U2.

/ \
/

Maths

\

Figure 2: A University-wide System

With the naming structure as shown, files in the system VU1' in the Computing Science
Department could be named using the prefix V../../CS/U1 ' from within the Electrical
Engineering Department's UNIX systems.

Such a naming structure has to be one that can be agreed to by all the system
administrators, and which does not require frequent major modification - such modification
of the UNIX United naming structure can be as disruptive as a major modification of the
structure inside a single UNIX system would be, due to the fact that stored path names
(e.g. incorporated in files and programs) could be invalidated.

The naming structure could, but does not necessarily, reflect the topology of the
underlying communications network. It certainly is not intended to be changed in response
to temporary breaks in communication paths, or of service from particular UNIX systems.
(An analogy is to the international telephone directory - the UK country code (44) contin­
ues to exist whether or not the transatlantic telephone service is operational.)

One final point: We have developed mechanisms which make it possible for UNIX systems
to appear in the naming structure in positions subservient to other UNIX systems, though
these are not yet incorporated in the version of the Connection which we make available to
other organizations. For example, in the previous figure, CS might denote a UNIX system,
not just an ordinary directory. We regard this as a very important generalisation, since
it allows existing UNIX United systems to be combined together, just as if they were ordi­
nary UNIX systems.

3. THE NEWCASTLE CONNECTION

The UNIX United scheme whose external characteristics were described above is pro­
vided by means of communication links, and the incorporation of an additional layer of
software - the Newcastle Connection - in each of the component UNIX systems. Conceptu­
ally, this layer of software sits on top of the resident UNIX kernel, i.e. between the
UNIX kernel and the rest of the UNIX software (e.g. shell and the various command pro­
grams) and the user programs. In actual fact, one has a choice between keeping the Con­
nection completely separate from the kernel, or of installing it within the kernel. The
former is the simpler means of installing the Connection, but involves the recompilation
or relinking of existing user programs and non-resident UNIX software. The latter tech­
nique is a kernel-specific optimization that avoids the need for such recompiliation or
relinking. This method of installation naturally requires more effort and experience, and
is best undertaken after completing the simpler porting technique, but in practice has not
proved overly difficult. For convenience, in what follows we will assume that the Connec­
tion has been installed as a software layer, separate from the kernel.

- 78 -

From above, the Connection layer is functionally indistinguishable from the kernel.
From below, it appears to be a normal user process. Its role is to filter out system
calls that have to be re-directed to another UNIX system, and to accept system calls that
have been directed to it from other systems. Communication between the Connection layers
on the various systems is based on the use of a remote procedure call protocol [2], and is
shown schematically below:

¡User programs,
I non-resident
¡UNIX software

¡Newcastle Connection

¡UNIX Kernel

¡User programs,
I non-resident
¡UNIX software

remote procedure
< >¡Newcastle Connection

calls ¡
¡UNIX Kernel

UNIX1 UN1X2

Figure 3: The Position of the Connection Layer

In fact a slightly more detailed picture of the structure of the system would of course
reveal that communications actually occur at hardware level, and that the kernel includes
means for handling low level communications protocols.

The Connection layer has to disguise from the processes above it the fact that some
of their system calls are handled remotely (e.g. those concerned with accessing remote
files). It similarly has to disguise from the kernel below it that the requests for the
kernel's services, and the responses it provides, can be coming from and going to, remote
processes. This has to be done without in any way changing the means by which system
calls (apparently direct to the UNIX kernel) identify any real or abstract objects that
are involved.

The kernel in fact uses various different means of identification for the various
different types of object. For example, open files (and devices) are identified by an
integer (usually in the range 0 to 19), logged on users by what is effectively an index
into the password file, etc. Such name spaces are of course inherently local. The Con­
nection layer therefore has to accept such an apparently local name and use mapping tables
to determine whether the object really is local, or instead belongs to some other system
(where it may well be known by some quite different local name). The various mapping
tables will have been set up previously - for example when a file is opened - and for
non-local objects will indicate how to communicate with the machine on which the object is
located. The selection of actual communication paths is performed by the Connection
layer, and completely hidden from the user and his programs.

Such mapping does not however apply to the single most visible name space used by
UNIX, i.e. the naming structure used at shell level, and at the program level in the
xopen' and ^exec' system calls, for identifying files and commands, respectively. Rather,
the Connection layer can be viewed as performing the role of glueing together the parts of
this naming structure that are stored on different UNIX machines, to form what appears to
be a single structure. Each component UNIX system stores, firstly, the section of the
naming tree associated with the system's own files and devices. Secondly, each system
also stores a copy of those parts of the overall naming structure that relate it to its
"name neighbours". These are the other UNIX systems with which it is directly connected in
naming terms (i.e. which can be reached via a traversal of the naming tree without passing
through a node representing another UNIX system).

- 79 -

(base) .
/ \

/ \
/ \

A B
/ \ / \
/ \ / \

E F D C
/ \
/ \

G H

Figure 4(a): A UNIX United Name Space

(base) . (base) .
/ \ / \

/ \ / \
/ \ / \

A B A B B
/ \ / \ \

/ \ / \ \
E F D C C

/ \
/ \

G H

UNIX-A UNIX-B UNIX-C

Figure 4(b): Represention of the Name Space

In Figure 4(a), if "directories" A, B and C are associated with separate UNIX sys­
tems, the parts of the tree representation stored in each system are as shown in Figure
4(b), namely:

UNIX-A: A,B,E,F,(base)

UNIX-B: A, B, C.D, (base)

UNIX-C: B.C.G.H

It is assumed that shared parts of the naming tree are agreed to by the administra­
tors of each of the systems involved, and do not require frequent modification - a major
modification of the UNIX United naming structure can be as disruptive as a major modifica­
tion of the naming structure inside a single UNIX system. This is because names stored in
files or incorporated in programs (or even just known to users) may be invalidated.
(Again one can draw a useful analogy to the telephone system. Changes to international and
area codes would be highly disruptive, and are avoided as far as possible. For example,
they are not changed merely because the underlying physical network has to be modified.)

Within each UNIX system, the Connection uses the local fragment of the UNIX United
naming tree to resolve file names. Names are interpreted as a route through the tree,
each element specifying the next branch to be taken. If the name can be fully interpreted
locally, only a local access is involved. If a leaf corresponding to a remote system is
reached, then execution must be continued remotely by making a remote procedure call to
the appropriate system. Such leaves are specially marked, and contain the network address
of the appropriate remote station. This address is given to the RPC as routing informa­
tion. (In some cases a request may be passed on through a number of Connections before
being satisfied.)

As well as accessing files using a name, a UNIX program can Nopen' a file and
thereafter access it using the file descriptor returned from the Nopen' system call. When
a file is opened the Connection makes an entry in a per-process table indicating whether
or not the file descriptor refers to a local or a remote file. The table also holds net­
work station addresses for remote file descriptors. Subsequent accesses using the

- 80 -

descriptor refer to this table using the information there to route remote accesses
without further delay.

The actual remote file access is carried out for the user by a file server process
that runs in the remote machine. Each user has their own file server, and the initial
allocation of these is carried out by a "spawner" process that runs continuously. This
latter process is callable (using a standard name) by any external user, and, upon
request, will spawn a file server (after carrying out some user/group mapping), returning
its external name to the user that initiated the request. The user then communicates
directly with this file server, which is capable of carrying out the full range of Unix
system calls. The user/group mapping is carried out to ensure that the access rights of
the file server are in accord with those allowed to the external user by the local system
manager, and consists of converting external names into valid local names. Nevertheless, a
file server is still an extension of the environment of a user on a remote machine, and
any relevant changes in the environment seen by a user must be mirrored by it. The most
important of these is that when a user process "forks" (that is, creates a duplicate of
itself), all the remote file servers which it is connected with must also fork. This
greatly simplifies the implementation of remote execution and signalling, as each user
process only ever has to deal with a single remote file server.

Communication with the "spawner" and the file servers always takes the form of a
remote procedure call, the first parameter of all calls being a sequence number. This is
used by the servers to detect retry attempts - if the received sequence number is the same
as that of the last call, then it is a retry (the RPC scheme precludes calls being lost,
so there is no need to check for continuity in the sequence).

4. NETWORKING ISSUES

As indicated above, all communication between machines in a UNIX United system is
performed by means of the RPC protocol, using network addresses that have been obtained
from the leaves of the local fragment of the naming tree. Ideally, all the machines will
be directly connected together, i.e. will belong to the same network address space, so
that any machine can make a remote procedure call directly on any other machine. This is
immediately achieved by the use of a single physical network, such as an Ethernet, but
could be also be achieved by some sort of inter-network transport service which hides the
existence of multiple physical networks from the Connection. However the Connection is
currently being extended to contain its own provisions for coping with multiple network
address spaces, and for forwarding RPC calls across networks, for use in situations where
such a transport service is not provided.

Any actual implementation of the RPC protocol requires primitive operations for
exchanging messages between processes on different machines. In order to shield the Con­
nection layer from the complexities of having to handle differing network interfaces (for
reasons both of simplifying its design, and improving its portablity) we have recently
defined a single interface, the UDS interface, which provides a uniform process-to-process
datagram service [3]. This hides the actual protocols used over each local or wide area
network, and provides instead a small set of simple primitives for sending and receiving
(possibly large) datagrams, using a standardized network addressing scheme, based on a
<host number, port number> pair. Exception reporting is also standardized, the assumption
being that the implementation of the UDS interface contains, where necessary, sufficient
fault tolerance measures for the Connection to be able to rely on a datagram being
transmitted accurately, and in its entirety, unless an exception is reported, in which
case the Connection can request a retry. (The fault tolerance measures taken by any par­
ticular implementation will depend on the assumptions that can be made about the inherent
reliability of the actual network involved.)

The UDS interface enables a datagram to be sent from, or received into, a set of
non-contiguous buffers, and in effect places no further limit on the size of the datagram
than that implied by the total size of the buffers. Each I/O driver implementing the
interface for a given network therefore has the responsibility for performing any fragmen­
tation and reassembly operations made necessary by the limitations imposed by the underly­
ing communications hardware and software. This shields the rest of the Connection from
such limitations, which in any case tend to be network-specific. The scatter/gather
facilities provided to enable the use of non-contiguous buffers greatly reduce the amount
of data copying involved in an RPC, and the ability to send large datagrams similarly
reduces the number of I/O calls that have to be made across the user/kernel interface.
Thus we have found that the introduction of the UDS interface in place of more

- 81 -

conventional network-specific datagram interfaces has not only simplified the tasks of the
Connection, and the problems of porting it onto new hardware, but also given useful per­
formance benefits [4].

5. EXTENSIONS TO THE BASIC UNIX UNITED SCHEME

We have found that the conceptual simplifications to the task of implementing a
UNIX-based distributed computing system that the Newcastle Connection approach has pro­
vided have spurred us to produce a variety of extensions of, or variations on, the basic
theme, some of which we have already started to implement.

The Connection layer can be regarded as isolating and solving the problems associated
just with distribution - and, it turns out, is applicable to the case of distributed sys­
tems made from components other than complete UNIX systems. For example, one could con­
nect together some systems which have little or no file storage with other systems that
have a great deal - i.e. construct a UNIX United system out of workstations and file
servers. Almost all that is necessary is to set up the naming tree properly.

Moreover since the Connection layer can be independent of the internals of the UNIX
kernel, it is not even necessary for the Connection layer to have a complete kernel under­
neath it - all that is needed is a kernel that can respond properly (even if only with
exception messages) to the various sorts of system call that will penetrate down through,
or are needed to support, the Connection layer. In fact the Connection layer itself can
be economised on, if for example it is mounted on a workstation that serves as little more
than a screen editor, say, and so has only a very limited variety of interactions with the
rest of the UNIX United system. All that is necessary is adherence to the general format
of the inter-machine system call protocol used by the Newcastle Connection, even if most
types of call are responded to only by exception reports.

Thus the syntax and semantics of this protocol assume a considerable significance,
since it can be used as the unifying factor in a very general yet extremely simple scheme
for putting together sophisticated distributed systems out of a variety of size and type
of component - an analogy we like to make is that the protocol operates like the scheme of
standard-size dimples that allow a variety of shapes of LEGO children's building blocks to
be connected together into a coherent whole.

In addition to the problem of distribution, we also have taken what are, we believe,
several other equally separable problems, in particular those of (i) providing error
recovery (for example in response to input errors or unmaskable hardware faults), (ii)
using redundant hardware provided in the hope of masking hardware faults, (iii) the
enforcement of multi-level security policies and (iv) load balancing between the component
systems, and plan wherever practicable to embody their solutions in other separate layers
of software. Indeed, three significant extensions of UNIX United have already been imple­
mented, albeit in prototype form. The first of these provides multi-level security, using
encryption to enforce security barriers beween component machines (which each run at a
single security level) and to control permissible security re-classifications [5]. The
other two extensions are related to hardware fault tolerance. One uses file and process
triplication and majority voting to mask hardware faults - application programs are
unchanged, though in fact running in synchronisation on several machines with hidden vot­
ing. The other uses duplicated disks to provides a crash-resistant high integrity file
system [6].

6. OPERATIONAL EXPERIENCE
The first UNIX United system was based on a set of three PDP 11/23s and two aged

PDP11/45s, all running UNIX V7, and connected by a Cambridge Ring. At the time of writing
(August 1984) this system is being upgraded, with the 11/45s being replaced by VAX/750
computers. The system has been operational for over two years, and usually in regular
daily use. Our experience has been that the most heavily used facilities have been those
concerned with file transfer and I/O redirection, for example in order to make use of the
line printer and magnetic tape unit that are attached to one machine. The Connection has
also been relied on for network mail, for solving the problems of overnight file-dumping
(of all machines, onto the one tape unit) and, perhaps most significantly, for software
maintenance and distribution within the UNIX United system

A second and hitherto separate UNIX United system at Newcastle, based on ICL PERQs
connected by Ethernet, was implemented during May 1983 in collaboration with ICL, and has

- 82 -

since also been used regularly. Work is now in hand to link this system to the VAX/750
computers, and to several other recently acquired UNIX machines, from various manufactur­
ers, in order to produce one single enlarged and somewhat heterogeneous UNIX United sys­
tem, involving both a Ring and an Ethernet.

Pre-release versions of our software were first made available to several other
organisations, starting in mid-1982, the first formal release being issued in June 1983.
By now a considerable number of organizations have taken out either commercial or educa­
tional licenses, and have ported the Connection to various other machines, networks and
versions of UNIX, including System III and Berkeley 4.2.

As regards the performance of a UNIX United system, it is clear that this depends on
three essentially separate factors: the capabilities of the component UNIX systems, the
efficiency of the underlying communications hardware and software, and the overheads due
to the Connection, only the last of which is our responsibility. In fact the overheads
due to the Connection are really quite modest. Those caused by the need to confirm that a
system call only involves a local file descriptor are virtually imperceptible, though
local path name calls such as ^open' and ^exec' are slowed down somewhat, since for each
such call an additional *stat' system call is made from within the Connection. When a
call proves to involve a remote facility, this normally just involves making one RPC call,
and waiting for a reply. The RPC protocol is itself very simple and usually involves
sending one message (the packaged system call) and receiving one message in reply. The
file server that accepts such calls from remote machines is similarly simple, being dedi­
cated to serving the needs of just a single remote process, and in most cases does little
more than make system calls on behalf of this process and send it the results.

Our first UNIX United system functioned surprisingly well, despite the fact that the
Cambridge Ring stations used were quite slow, being interrupt-driven rather than direct
memory access devices. (Such stations cause UNIX to take an interrupt for every pair of
bytes sent and received over the Ring!) In fact terminal users in general noticed little
performance difference between local and remote accesses and execution. This perhaps
indicates that even interrupt-driven stations are reasonably well matched to the rather
modest performance that UNIX itself can achieve on a small PDP11/23 used as a personal
workstation, or on a PDP11/45 that is usually being used by a number of demanding terminal
jobs.

A separate project has now been set up to undertake performance monitoring and
evaluation of UNIX United systems, a task whose difficulty derives in part from the well-
know problems of making meaningful performance assessments and comparisons of ordinary
UNIX systems. However some simple experimental measurements have already been made using
our PERQ-based system, which has much more adequate network hardware, in fact an Ethernet
with direct memory access interface units. These measurements produced the initially
surprising result that copying of files to or from a remote PERQ could be 20% or more fas­
ter than local file copying. In fact this merely indicates the extent to which contention
for a single disk can limit a machine's performance. One other interesting measurement
showed that file transfers using the standard UNIX file copy command and the Connection
achieved almost twice the speed achieved by the manufacturer-supplied file transfer proto­
col, which uses the ECMA Level 4 Transport Service over the Ethernet. However the more
significant result is that, on this system also, users in general notice little difference
in performance between local and remote operations.

The total amount of code involved in the various parts of the Connection is about
11,000 lines of C. Of this, the file server code amounts to approximately 2500 lines, the
code involved in intercepting and mapping the various system calls some 7500 lines, and
the xspawner' which is used to start up file server processes on demand the remaining 1000
lines. Installation of the Connection as a separate layer involves including a copy of
selected parts of the interception code in each user program. On the PDP 11/45, for exam­
ple, the amount of code added varies between 3.5k and 12k bytes, depending on the number
of different system calls that the program invokes. (The alternative means of installing
the Connection, discussed briefly in Section 3, involves inserting just the interception
code in the kernel - the file server and spawner code remains outside the kernel.)

On the PDP 11/45 the file server code occupies about 12.5k bytes, and in addition
each actual server process requires 2.5k bytes of space. The single spawner process
requires a total of 8k bytes of code and data space. (By way of comparison, the UNIX ker­
nel as set up for our particular I/O configuration occupies 48.5k bytes of code space, and
83.5k bytes in total.) The comparatively small size of the Connection reflects the need we

- 83 -

had to make the system work on our small PDP 11/23s, which provided a strong incentive to
find what we feel justified in claiming are simple well-structured solutions to the vari­
ous implementation problems. (In our view an overabundance of program storage space can
have almost as bad an effect on the quality of a software system as does inadequate space
- it is surely no coincidence that UNIX was first designed for quite modestly sized
machines!)

7. RELATED EARLIER WORK

The Newcastle Connection, and the UNIX United scheme that it makes possible, have
many precursors, and not just within the UNIX world.

The idea of providing a layer of software which aims to shield users of a set of
inter-connected computers from the need to concern themselves with networking protocols,
or even the fact of there being several computers involved, is well-established. It is,
for example, what the IBM CICS System [7] does for users of various transaction-processing
programs, and what the National Software Works project [8] aimed to do for the users of
various software development tools, running on a variety of different operating systems.
Such layers of software are intended for somewhat specialised use, and run on top of
specific sets of application programs. At the other end of the spectrum, such location-
or network-transparency is also one of the aims of the Accent kernel [9], on which operat­
ing systems can be constructed which use its "port" concept as a means of unifying inter­
process communication, inter-computer message passing, and operating system calls.

The dawning realisation that the * shell' job control language and the program-level
facilities (i.e. system calls) of the UNIX multiprogramming system could suffice, and
indeed would be highly appropriate, to control a distributed computing system can be
traced in a whole series of distributed UNIX projects. The global file naming technique
used in the early Nuucp' facilities [10] for interconnecting UNIX systems via standard
telephone circuits can be seen as a special, but rather ad hoc, extension of the indivi­
dual file system naming hierarchies, and had been copied by us in our Distributed Recover­
able File System [11]. (The technique provides what is in effect a set of named hierar­
chies, rather than a single enlarged hierarchy.)

Rather better integrated with the standard UNIX file naming hierarchy are the facili­
ties provided in the Network UNIX System [12]. This modification of standard UNIX pro­
vides a series of Arpanet protocols, which are invoked by means of some additional system
commands, using what appeqr to be ordinary file names as the means of identifying which
Arpanet host is to be communicated with. (The paper describing this system also specu­
lates on the possibility of redesigning the shell interpreter so as to provide network
transparency for commands and files at the shell command language level.) The Purdue
Engineering Computer Network [13] is conceptually similar to the Network UNIX System,
though based on hard-wired high speed duplex connections. It provides additional commands
which invoke the services of special protocols for virtual terminal access and remote exe­
cution at the shell level, and also a means of load balancing through a scheduling program
which takes responsibility for deciding which processor should execute certain selected
commands.

The distributed system of interconnected S-UNIX personal workstations and F-UNIX file
servers [14] goes further by providing each workstation user with a ordinary UNIX inter­
face, without any additional non-standard commands, yet incorporating a distributed ver­
sion of the UNIX hierarchical file store containing just his own local files plus all the
files held on the file servers. This system is one of several built at Bell Labs using
the Datakit virtual circuit switch - others are RIDE [15] and D/UNIX [16]. The RIDE sys­
tem provides complete remote file access and remote program execution, but is based on a
xuucp'-like, rather than standard, UNIX naming hierarchy - it is however implemented
merely by adding a software layer on top of the UNIX kernel, an approach which is highly
similar to that we have since used with our Newcastle Connection technique. D/UNIX is a
distributed system based on modified versions of UNIX which provide virtual circuits
between processes, and a transparent file sharing scheme covering all the files on all the
component systems.

A fully symmetrical means of linking computer systems together so as to give the
appearance of a single UNIX-like hierarchical file store, and the standard shell command
language, is also provided by the LOCUS system - the paper [17] describing this system
also discusses its intended extension to provide remote program execution as well as
remote file access. However, for all its external similarity to UNIX, the LOCUS system

- 84 -

involves a completely redesigned operating system rather than a modification of an exist­
ing UNIX system, albeit an operating system which is also designed to have extensive fault
tolerance facilities.

The penultimate stage in the evolution can be seen in the COCANET local network
operating system [18], a system which has been built using the standard UNIX system, and
which comes very close indeed to our aim of combining a set of standard UNIX systems into
a single unified system, and which certainly supports network-transparent remote execution
as well as file access. However the COCANET designers have allowed themselves to make a
number of changes to the UNIX kernel and would appear, from the description they give, not
to have coped fully with user-id mapping. It would also appear that COCANET is designed
specifically around the idea of having a relatively small number of machines linked by a
single high-speed ring, and hence has a rather restrictive structure tree, which is viewed
slightly differently from each machine. However many of the mechanisms incorporated in
UNIX United are very similar to those used in COCANET.

It is thus but a comparatively small step from COCANET to UNIX United, and to the
idea of the Connection layer capable of being placed on top of an unchanged UNIX kernel,
replicating all its facilities exactly in a network-transparent fashion, and capable of
making a distributed system involving large numbers of computers, connected by a variety
of local and wide area networks. Incidentally, one can draw an interesting parallel
between the Connection layer and what is sometimes called a "hypervisor", the best-known
example of which is VM/370 [19]. Each is a self-contained layer of software, which makes
no changes to the functional appearance of the system beneath it (the IBM/370 architecture
in the case of VM/370, which fits under rather than on top of the operating system ker­
nel). However whereas a hypervisor's function is to make a single system act as a set of
separate systems, the Newcastle Connection (a "hypovisor"?) makes a set of separate
(though of course linked) systems act like a single system!

However, to our embarrassment, we have to admit that the idea of the Connection
layer, of the basic UNIX United scheme, and of most of the extensions of the scheme, did
not arise from careful study and analysis of these precursors. (Indeed it is clear that
what was presented above as a more-or-less orderly evolutionary development path often
involved parallel activity by several groups, and much accidental re-invention.) In fact
we were not consciously aware of any of these systems (other than Nuucp' and of course
DRFS) whilst the work that led to the Newcastle Connection was in progress. Indeed, by
the time we learnt of LOCUS and COCANET, all the basic ideas and strategies to be incor­
porated in the Newcastle Connection had been worked out, though not all in full detail,
and much of the system was already operational and in daily use. Rather we can trace the
origins of our scheme to the existence of the plans for our remote procedure call proto­
col, and the idea, which we now know has occurred to many groups independently, of extend­
ing the UNIX ^mount1 facility from that of mounting replaceable disk packs to that of
mounting one UNIX system on another.

This idea arose at Newcastle in early December 1981 - within a week or so much of the
UNIX United concept had been thought up and even roughly documented. A hesitant start at
what was initially intended as just an experimental and partial implementation was made
after Christmas, but within a month many facilities related to accessing and operating on
files remotely over the Cambridge Ring were in active use. Work proceeded rapidly, both
on extending the range of UNIX kernel features that the Newcastle Connection mapped
correctly, and on discovering, mainly via experimentation, some of the more arcane
features of the kernel interface as implemented and used in V7 UNIX. At about this stage
we found out about first the S-UNIX/F-UNIX and LOCUS systems, and shortly afterwards the
COCANET and then the RIDE systems. These various papers were a considerable encouragement
to us to continue our efforts, leading to a first complete system by mid-1982, and also
provided us with a useful perspective on our approach. In particular they strengthened
our growing belief in the viability of an alternative, UNIX-based, approach to distributed
computing to that based on the use of a variety of explicit servers, each with its own
specialised service protocol [20,21].

8. WHY JUST UNIX?
It is interesting to analyse just what it is about UNIX, and the linguistic inter­

faces it provides at shell and system call level, that make it so suitable for use as the
model and basis for a network operating system. There seem to be six principal factors
involved.

- 85 -

First, there is the hierarchical file (and device and command) naming system. This
makes it easy to combine systems, because the various hierarchical name spaces just become
component name spaces in a larger hierarchy, without any problems due to name clashes.
The standard UNIX mechanisms for file protection and controlled sharing of files then
carry over directly, once the problem of possible clashes of user identifiers is handled
properly.

Second, there are the UNIX facilities for dynamically selecting the current working
directory and root directory. In particular the ability to select the root directory -
normally thought of as one of the more exotic and little needed of the UNIX system com­
mands - seems to have been designed especially for UNIX United, since it provides a per­
fect w a y of hiding the extra levels of the directory tree that have to be introduced.

Third, and obviously vital, is the fact that UNIX allows its users, and their pro­
grams, to initiate asynchronous processes. This is used inside the Newcastle Connection,
and also provides the means whereby even a single user can make use via the Newcastle Con­
nection of several or indeed all of the computers that are involved in the UNIX United
system. It also provides the means whereby slow file transfers (via low bandwidth wide
area networks) can be relegated to background processing, and so still be organised using
remote procedure calls.

Fourth, there is the fact that the UNIX system call interface is (relatively) clean
and simple, and can easily be regarded as providing a small number of reasonably well
defined abstract types. The task of virtualising these types, so a s to give network tran­
sparency, therefore remains manageable.

Fifth, there is the fact, even in this day and age still regrettably worthy of men­
tion, that the original UNIX system, and a l l of its derivatives known to us, are written
in a fairly satisfactory high level language. Our method of incorporating the Newcastle
Connection into UNIX as a separate software layer therefore merely involved recompiling
relevant parts of the system, using a different subroutine library.

Finally, there is the well-established set of exception reporting conventions that
are used in UNIX, for example, to indicate the reasons why particular system call requests
cannot be honoured. When such a call has, via the Newcastle Connection, involved
attempted communication with another UNIX system there are various other (quite likely)
reasons, but they can be mapped onto the exceptions that the caller is already supposed to
be a b l e to deal with.

However it is unlikely that the idea could not be carried across to at least some
other systems. Indeed a report by Goldstein et al [22] implies that something similar is
being bravely contemplated for IBM's MVS operating system, and some aspects of the idea
are we understand commercially available as additions to the RSX/11 operating system - no
doubt other examples exist. The one other system whose suitability for the Newcastle Con­
nection approach has been considered at a l l seriously by us is DEC's VAX/VMS system. It
would appear that it has many of the necessary characteristics though there could be prob­
lems with the way that devices are involved with its system of file naming.

This section would not be complete without any mention of what we regard as some
shortcomings of the UNIX V 7 specifications (a t system call level): Firstly, the system of
"signals' for asynchronous communication between processes could be improved. Allied to
this, a general synchronous inter-process communication mechanism would be useful, allow­
ing communication between numbers of unrelated processes. Some awkward features in the
file protection scheme were encountered when constructing the file server. These were
associated with the notions of rsuper-user* and veffective user-id'. Lastly, we found
that the ability to have many directory entries C l i n k s ') , each naming t h e same physical
file, w a s elegant in concept but severely limited in generality by the actual UNIX V 7
implementation. (Unfortunately, the various "improved" versions of UNIX that have
appeared since Version 7 have done little to remedy most of these shortcomings.)

With respect to the programs that are provided with the UNIX system, very few diffi­
culties were encountered in connecting them, except, that is, for the Shell. This program
makes use of system facilities in non-standard ways, and its internal design is obscure to
say the least. However, it has proved to be a n excellent testbed for the system - when
porting the Connection, once the Shell works you can be pretty sure that most other pro­
grams will!

- 86 -

9. CONCLUSIONS

The first of our internal memoranda on what we later came to call the Newcastle Con­
nection described the idea as "so simple and obvious that it surely cannot be novel".
And, as described above, it did turn out to have a number of precursors - in fact probably
many more than we yet realise. However we take this as confirmation of the merits of the
twin ideas of network transparency and of its provision by a single separate mapping
layer, an approach whose ramifications we feel we have barely begun to explore. (A more
general discussion of this approach, and its relevance to the problems of designing highly
reliable and secure systems can be found in[23L) Certainly our present plan is to con­
tinue our programme of experimental implementations and applications, and to determine how
well the Newcastle Connection (and UNIX) can withstand the weight of additional software
layers containing the various reliability and security-related mechanisms that we have
developed, hitherto in a rather fragmented fashion for various systems and languages.

One other point is worth stressing. It has for some years been well-accepted that
the structure and mechanisms of a multiprocessing operating system are very similar to
those of a (good) multiprogramming system. What has now become clear to us, as a result
of our work on UNIX United, is that this similarity can usefully extend also to distri­
buted systems. The additional problems and opportunities that face the designer of a
homogeneous distributed system should not be allowed to obscure the continued relevance of
much established practice regarding the design of multiprogramming systems.

_Hh ACKNOWLEDGEMENTS

These lecture notes are based closely on the original paper describing the Newcastle
Connection [24]. My co-authors on this paper, Dave Brownbridge and Lindsay Marshall,
jointly implemented the pre-release version of the Connection, since when Lindsay Marshall
has borne the major responsibility for its design and implementation, aided recently by
Jay Black. The Remote Procedure Call Protocol on which that now used in the Connection is
based was originally designed and implemented by Fabio Panzieri and Santosh Shrivastava.
The UDS interface was designed by Fabio Panzieri and myself, and has been implemented for
various types of machine and network by Fabio Panzieri, Andy Linton, Robert Stroud and
Graeme Dixon. Robert Stroud has also had the major responsibility for the first port of
the Connection (to the PERQ) and for its integration into a UNIX kernel.

A special acknowledgement is obviously due to the creators of that famous Registered
Footnote of Bell Laboratories, UNIX, much of whose external characteristics, if not
detailed internal design, deserve the highest praise. Last but not least, I am pleased to
acknowledge that our work has been supported by research contracts from the UK Science and
Engineering Research Council, and the Royal Radar and Signals Establishment.

* # #

References

[1] D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System", Comm. ACM Vol. _17(7),
pp.365-375 (1974).

[2] S. K. Shrivastava and F. Panzieri, "The Design of a Reliable Remote Procedure Call
Mechanism", IEEE Trans, on Computers (July 1982).

[3] F. Panzieri and B. Randell, "Interfacing UNIX to Data Communication Networks", Report
190, Computing Laboratory, University of Newcastle upon Tyne (Dec. 1983).

[4] A. Linton and F. Panzieri, "A Communication System Supporting Large Datagrams on a
Local Area Network", Report 191, Computing Laboratory, University of Newcastle upon
Tyne (1984).

[5] J. M. Rushby and B. Randell, "A Distributed Secure System", Computer Vol. Jj>.(7), IEEE
(July 1983).

[6] J. A. Anyanwu, "A Reliable Stable Storage System for UNIX", Report 191, Computing
Laboratory, University of Newcastle upon Tyne (1984).

- 87 -

[7] J. Gray, "IBM's Customer Information Control System (CICS)", Operating System Review
Vol. J15(3), pp.11-12, ACM (July 1981).

[8] R. E. Millstein, "The National Software Works: A Distributed Processing System",
Proc. ACM 1977 Annual Conference, Seattle, Washington, pp.44-52, ACM (Oct. 1977).

[9] R. Rashid, "Accent: A Communication Oriented Network Operating System Kernel",
Operating Systems Review Vol. J[5_(5), pp.64-75 (Dec. 1981).

[10] D. A. Nowitz, "Uucp Implementation Description", p. Sect. 37 in UNIX Programmer*s
Manual, Seventh Edition, Vol. 2 (Jan. 1979).

[11] M. Jegado, "Recoverability Aspects of a Distributed File System", Software Practice
and Experience Vol. J3.(1), pp.33-44 (Jan. 1983).

[12] G. L. Chesson, "The Network UNIX System", Operating Systems Review Vol. £(5), pp.60-
66 (1975). Also in Proc. 5th Symp. on Operating Systems Principles.

[13] K. Hwang, W. J. Croft, G. H. Goble, B. W. Wah, F. A. Briggs, W. R. Simmons, and C. L.
Coates, "A UNIX-Based Local Computer Network with Load Balancing", Computer, pp.55-66
(Apr. 1982).

[14] G. W. R. Luderer, H. Che, J. P. Haggerty, P. A. Kirslis, and W. T. Marshall, "A Dis­
tributed Unix System Based on a Virtual Circuit Switch", Proc. 8th Symp. Operating
System Principles, Pacific Grove, Calif., pp.160-168, ACM (Dec 1981). Also in: ACM
Special Interest Group on Operating Systems - Operating Systems Review, Vol 15, No 5
(Dec 1981).

[15] P. M. Lu, "A System for Resource Sharing in a Distributed Environment - RIDE", Proc.
IEEE Computer Society 3rd COMPSAC, IEEE New York (1979).

[16] J. C. Kaufeld and D. L. Russell, "Distributed UNIX System", in Workshop on Fundamen­
tal Issues in Distributed Computing, ACM SIGOPS and SIGPLAN (15-17 Dec. 1980).

[17] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel, "LOCUS:
A Network Transparent, High Reliability Distributed System", Operating Systems Review
Vol. 21.(5), pp. 169-177, ACM (Dec. 1981). (Proc. ACM 8th Conf. Operating System Prin­
ciples, Asilomar, Calif.).

[18] L. A. Rowe and K. P. Birman, "A Local Network Based on the UNIX Operating System.",
IEEE Trans, on Software Eng. Vol. SE-8(2), pp.137-146 (Mar 1982).

[191 L. H. Seawright et al, "Papers on Virtual Machine Facility/370", IBM Systems J_. Vol.
18(1), pp.4-180 (1979).

[20] M. V. Wilkes and R. M. Needham, "The Cambridge Model Distributed System", Operating
System Review Vol. 24(1), pp.21-28, ACM (Jan. 1980).

[21] E. Lazowska, H. Levy, G. Almes, M. Fischer, R. Fowler, and S. Vestal, "The Architec­
ture of the EDEN System", Operating Systems Review Vol. 25(5), pp.148-159, ACM (Dec.
1981). (Proc. ACM 8th Conf. Operating System Principles, Asilomar, Calif.).

[22] B. Goldstein, G. Trivett, and I. Wladawsky-Berger, "Distributed Computing in the
Large Systems Environment", Report RC 9027, IBM T. J. Watson Research Center, York-
town Heights, N.Y. (9 Sept. 1981).

[23] B. Randell, "Recursively Structured Distributed Computing Systems", pp. 3-11 in Proc.
3rd Symp. Reliability on Distributed Software and Database Systems, IEEE (October
1983).

[24] D. R. Brownbridge, L. F. Marshall, and B. Randell, "The Newcastle Connection - or
UNIXes of the World Unite!", Software Practice and Experience Vol. 22(12), pp.1147-
1162 (Dec. 1982).

